[pt] MODELOS EM ESPAÇO DE ESTADO: FORMULAÇÃO MULTIVARIADA APLICADA À PREVISÃO DE CARGA ELÉTRICA
Ano de defesa: | 2006 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8707&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=8707&idi=2 http://doi.org/10.17771/PUCRio.acad.8707 |
Resumo: | [pt] Os métodos de análise de séries temporais têm se revelado uma importante ferramenta de apoio à tomada de decisões, com importância crescente em um mundo cada vez mais globalizado. Esse fato pode ser ilustrado, entre muitos outros, através de um convênio firmado entre o CEPEL, o Núcleo de Estatística Computacional da PUC/RJ e a Eletrobrás, para se avaliar a utilidade dessas ferramentas nas etapas do planejamento do setor elétrico brasileiro. A metodologia em Espaço de Estado proporcionou o surgimento de duas importantes classes de modelos de previsão e análise de séries temporais completamente alternativas (os modelos estruturais e os modelos de inovações em espaço de estado), e, por isso, podem por vezes, causar dúvidas quando se fala em métodos de previsão em espaço de estado sem se especificar sobre qual das duas se está falando. Foi escolhido uma técnica específica e facilmente executável em softwares comerciais para cada classe de modelos: O desenvolvimento clássico de Harvey implementado no software STAMP, representando os modelos estruturais; e o desenvolvimento de Goodrich implementado no software FMP, representando os modelos de inovações. Essas técnicas estão tratadas de uma forma aprofundada, para proporcionar um melhor entendimento teórico das diferenças existentes entre ambas. Com o intuito de se avaliar a performance frente às outras técnicas existentes, são comparados os resultados das previsões entre as metodologias a partir de um sistema de comparação baseado nas estatísticas MAPE (Mean Absolute Percentage Error), RMSE (Root Mean Squared Error) e U-Theil. Para tanto são vistos sucintamente as técnicas: Alisamento Exponencial (Holt-Winters), Box & Jenkins e Redes Neurais. Todas as técnicas foram aplicadas aos dados de consumo de energia elétrica das 32 empresas concessionárias do setor no Brasil, além de comparadas com as previsões realizadas por essas concessionárias. A novidade deste trabalho para o projeto em andamento está na aplicação multivariada possível através da metodologia de Goodrich. |