[en] GRAPH OPTIMIZATION AND PROBABILISTIC SLAM OF MOBILE ROBOTS USING AN RGB-D SENSOR

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: JOAO CARLOS VIRGOLINO SOARES
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=51950&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=51950&idi=2
http://doi.org/10.17771/PUCRio.acad.51950
Resumo: [pt] Robôs móveis têm uma grande gama de aplicações, incluindo veículos autônomos, robôs industriais e veículos aéreos não tripulados. Navegação móvel autônoma é um assunto desafiador devido à alta incerteza e nãolinearidade inerente a ambientes não estruturados, locomoção e medições de sensores. Para executar navegação autônoma, um robô precisa de um mapa do ambiente e de uma estimativa de sua própria localização e orientação em relação ao sistema de referência global. No entando, geralmente o robô não possui informações prévias sobre o ambiente e deve criar o mapa usando informações de sensores e se localizar ao mesmo tempo, um problema chamado Mapeamento e Localização Simultâneos (SLAM). As formulações de SLAM usam algoritmos probabilísticos para lidar com as incertezas do problema, e a abordagem baseada em grafos é uma das soluções estado-da-arte para SLAM. Por muitos anos os sensores LRF (laser range finders) eram as escolhas mais populares de sensores para SLAM. No entanto, sensores RGB-D são uma alternativa interessante, devido ao baixo custo. Este trabalho apresenta uma implementação de RGB-D SLAM com uma abordagem baseada em grafos. A metodologia proposta usa o Sistema Operacional de Robôs (ROS) como middleware do sistema. A implementação é testada num robô de baixo custo e com um conjunto de dados reais obtidos na literatura. Também é apresentada a implementação de uma ferramenta de otimização de grafos para MATLAB.