[pt] DESAMBIGUAÇÃO DE SENTIDO DE PALAVRAS DIRIGIDA POR TÉCNICAS DE AGRUPAMENTO SOB O ENFOQUE DA MINERAÇÃO DE TEXTOS
Ano de defesa: | 2009 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=14103&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=14103&idi=2 http://doi.org/10.17771/PUCRio.acad.14103 |
Resumo: | [pt] Esta dissertação investigou a aplicação de processos de mineração de textos a partir de técnicas de inteligência computacional e aprendizado de máquina no problema de ambigüidade de sentido de palavras. O trabalho na área de métodos de apoio à decisão teve como objetivo o desenvolvimento de técnicas capazes de automatizar os processos de desambiguação bem como a construção de um protótipo baseado na implementação de algumas dessas técnicas. Desambiguação de sentido de palavra é o processo de atribuição de um significado a uma palavra obtido por meio de informações colhidas no contexto em que ela ocorre, e um de seus objetivos é mitigar os enganos introduzidos por construções textuais ambíguas, auxiliando assim o processo de tomada de decisão. Buscou-se ainda na utilização de conceitos, ferramentas e formas de documentação considerados em trabalhos anteriores de maneira a dar continuidade ao desenvolvimento científico e deixar um legado mais facilmente reutilizável em trabalhos futuros. Atenção especial foi dada ao processo de detecção de ambigüidades e, por esse motivo, uma abordagem diferenciada foi empregada. Diferente da forma mais comum de desambiguação, onde uma máquina é treinada para desambiguar determinado termo, buscou-se no presente trabalho a nãodependência de se conhecer o termo a ser tratado e assim tornar o sistema mais robusto e genérico. Para isso, foram desenvolvidas heurísticas específicas baseadas em técnicas de inteligência computacional. Os critérios semânticos para identificação de termos ambíguos foram extraídos das técnicas de agrupamento empregadas em léxicos construídos após algum processo de normalização de termos. O protótipo, SID - Sistema Inteligente de Desambiguação - foi desenvolvido em .NET, que permite uma grande diversidade de linguagens no desenvolvimento, o que facilita o reuso do código para a continuidade da pesquisa ou a utilização das técnicas implementadas em alguma aplicação de mineração de textos. A linguagem escolhida foi o C#, pela sua robustez, facilidade e semelhança sintática com JAVA e C++, linguagens amplamente conhecidas e utilizadas pela maioria dos desenvolvedores. |