Detalhes bibliográficos
Ano de defesa: |
2012 |
Autor(a) principal: |
Lima, Ana Carolina Espírito Santo
|
Orientador(a): |
Silva, Leandro Nunes de Castro
|
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Presbiteriana Mackenzie
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://dspace.mackenzie.br/handle/10899/24341
|
Resumo: |
As mídias sociais são uma forma de expressão dos interesses coletivos, as pessoas gostam de compartilhar informações e sentem-se valorizadas por causa disso. Entre as mídias sociais o microblog Twitter vem ganhando popularidade como uma plataforma para comunicação ins-tantânea. São milhões de mensagens geradas todos os dias, por cerca de 100 milhões de usuá-rios, carregadas dos mais diversos assuntos. Por ser uma plataforma de comunicação rápida esse microblog estimulou um fenômeno denominado narradores televisivos, em que os inter-nautas comentam sobre o que assistem na TV no momento em que é transmitido. Dessa inte-gração entre as mídias sociais e a televisão emergiu a TV Social. A quantidade de dados gera-dos sobre os programas de TV formam um rico material para análise de dados. Emissoras podem usar tais informações para aperfeiçoar seus programas e aumentar a interação com seu público. Dentre os principais desafios da análise de dados de mídias sociais encontram-se a análise de sentimento (determinação de polaridade em um texto, por exemplo, positivo ou negativo) e a desambiguação de sentido (determinação do contexto correto de palavras polis-sêmicas). Essa dissertação tem como objetivo usar técnicas de aprendizagem de máquina para a criação de uma ferramenta de apoio à TV Social com contribuições na automatização dos processos de análise de sentimento e desambiguação de sentido de mensagens postadas no Twitter. |