Análise de sentimento e desambiguação no contexto da tv social

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Lima, Ana Carolina Espírito Santo lattes
Orientador(a): Silva, Leandro Nunes de Castro lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Presbiteriana Mackenzie
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://dspace.mackenzie.br/handle/10899/24341
Resumo: As mídias sociais são uma forma de expressão dos interesses coletivos, as pessoas gostam de compartilhar informações e sentem-se valorizadas por causa disso. Entre as mídias sociais o microblog Twitter vem ganhando popularidade como uma plataforma para comunicação ins-tantânea. São milhões de mensagens geradas todos os dias, por cerca de 100 milhões de usuá-rios, carregadas dos mais diversos assuntos. Por ser uma plataforma de comunicação rápida esse microblog estimulou um fenômeno denominado narradores televisivos, em que os inter-nautas comentam sobre o que assistem na TV no momento em que é transmitido. Dessa inte-gração entre as mídias sociais e a televisão emergiu a TV Social. A quantidade de dados gera-dos sobre os programas de TV formam um rico material para análise de dados. Emissoras podem usar tais informações para aperfeiçoar seus programas e aumentar a interação com seu público. Dentre os principais desafios da análise de dados de mídias sociais encontram-se a análise de sentimento (determinação de polaridade em um texto, por exemplo, positivo ou negativo) e a desambiguação de sentido (determinação do contexto correto de palavras polis-sêmicas). Essa dissertação tem como objetivo usar técnicas de aprendizagem de máquina para a criação de uma ferramenta de apoio à TV Social com contribuições na automatização dos processos de análise de sentimento e desambiguação de sentido de mensagens postadas no Twitter.