[en] AN AUTOMATIC PREPROCESSING FOR TEXT MINING IN PORTUGUESE: A COMPUTER-AIDED APPROACH
Ano de defesa: | 2007 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=10081&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=10081&idi=2 http://doi.org/10.17771/PUCRio.acad.10081 |
Resumo: | [pt] O presente trabalho apresenta uma pesquisa onde é proposto um novo modelo de pré-processamento para mineração de textos em português utilizando técnicas de inteligência computacional baseadas em conceitos existentes, como redes neurais, sistemas dinâmicos, e estatística multidimensional. O objetivo dessa tese de doutorado é, portanto, inovar na fase de pré- processamento da mineração de textos, propondo um modelo automático de enriquecimento de dados textuais. Essa abordagem se apresenta como uma extensão do tradicional modelo de conjunto de palavras (bag-of-words), de preocupação mais estatística, e propõe um modelo do tipo conjunto de lexemas (bag-of-lexems) com maior aproveitamento do conteúdo lingüístico do texto em uma abordagem mais computacional, proporcionando resultados mais eficientes. O trabalho é complementado com o desenvolvimento e implementação de um sistema de préprocessamento de textos, que torna automática essa fase do processo de mineração de textos ora proposto. Apesar do objeto principal desta tese ser a etapa de préprocessamento, passaremos, de forma não muito aprofundada, por todas as etapas do processo de mineração de textos com o intuito de fornecer a teoria base completa para o entendimento do processo como um todo. Além de apresentar a teoria de cada etapa, individualmente, é executado um processamento completo (com coleta de dados, indexação, pré-processamento, mineração e pósprocessamento) utilizando nas outras etapas modelos já consagrados na literatura que tiveram sua implementação realizada durante esse trabalho. Ao final são mostradas funcionalidades e algumas aplicações como: classificação de documentos, extração de informações e interface de linguagem natural (ILN). |