[en] AN AUTOMATIC PREPROCESSING FOR TEXT MINING IN PORTUGUESE: A COMPUTER-AIDED APPROACH

Detalhes bibliográficos
Ano de defesa: 2007
Autor(a) principal: CHRISTIAN NUNES ARANHA
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=10081&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=10081&idi=2
http://doi.org/10.17771/PUCRio.acad.10081
Resumo: [pt] O presente trabalho apresenta uma pesquisa onde é proposto um novo modelo de pré-processamento para mineração de textos em português utilizando técnicas de inteligência computacional baseadas em conceitos existentes, como redes neurais, sistemas dinâmicos, e estatística multidimensional. O objetivo dessa tese de doutorado é, portanto, inovar na fase de pré- processamento da mineração de textos, propondo um modelo automático de enriquecimento de dados textuais. Essa abordagem se apresenta como uma extensão do tradicional modelo de conjunto de palavras (bag-of-words), de preocupação mais estatística, e propõe um modelo do tipo conjunto de lexemas (bag-of-lexems) com maior aproveitamento do conteúdo lingüístico do texto em uma abordagem mais computacional, proporcionando resultados mais eficientes. O trabalho é complementado com o desenvolvimento e implementação de um sistema de préprocessamento de textos, que torna automática essa fase do processo de mineração de textos ora proposto. Apesar do objeto principal desta tese ser a etapa de préprocessamento, passaremos, de forma não muito aprofundada, por todas as etapas do processo de mineração de textos com o intuito de fornecer a teoria base completa para o entendimento do processo como um todo. Além de apresentar a teoria de cada etapa, individualmente, é executado um processamento completo (com coleta de dados, indexação, pré-processamento, mineração e pósprocessamento) utilizando nas outras etapas modelos já consagrados na literatura que tiveram sua implementação realizada durante esse trabalho. Ao final são mostradas funcionalidades e algumas aplicações como: classificação de documentos, extração de informações e interface de linguagem natural (ILN).