[en] NONCONVEX FUNCTIONS OPTIMIZATION USING AN ESTIMATION OF DISTRIBUTION ALGORITHM BASED ON MULTIVARIATE COPULAS

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: HAROLD DIAS DE MELLO JUNIOR
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=25614&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=25614&idi=2
http://doi.org/10.17771/PUCRio.acad.25614
Resumo: [pt] Algoritmos de estimação de distribuição (EDAs – Estimation of Distribution Algorithms) são uma classe de algoritmos evolutivos capazes de extrair e utilizar conhecimento ao longo do processo de busca. O passo mais importante e um gargalo, que estabelece diferenciação entre esses algoritmos, é a estimação da distribuição de probabilidade conjunta das soluções mais promissoras determinadas pela função de avaliação. Recentemente, uma nova abordagem baseada em teoria das cópulas foi desenvolvida. Este trabalho apresenta um algoritmo de estimação baseado em cópulas para problemas de otimização numérica. Este modelo implementa um EDA através da expansão multivariada de cópulas (EDA-MEC – Estimation of Distribution Algorithm based on Multivariate Extension of Copulas) para estimar a distribuição de probabilidade da qual é gerada uma população de indivíduos. O EDA-MEC difere de outros EDAs baseados em cópulas em alguns aspectos: o parâmetro de cópula é estimado de forma dinâmica, através de medidas de dependência; utiliza uma variação da distribuição de probabilidade aprendida para gerar indivíduos que ajudam a evitar a convergência prematura; e utiliza uma heurística para reinicializar a população ao longo da evolução elitista como uma técnica adicional para tentar preservar a diversidade de soluções. Após um conjunto de testes de parâmetros, inclusive das distribuições marginais, este trabalho mostra que estas abordagens melhoram o desempenho global da otimização comparativamente a outros EDAs baseados em cópulas, com a perspectiva promissora de ser um algoritmo competitivo frente a outras heurísticas comprovadamente eficientes, tais como a Estratégia Evolutiva com Adaptação da Matriz de Covariância (CMA-ES - Covariance Matrix Adaptation Evolution Strategy).