[pt] ENSAIOS EM PREVISÃO DE CARGA A CURTO PRAZO

Detalhes bibliográficos
Ano de defesa: 2004
Autor(a) principal: LACIR JORGE SOARES
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=4438&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=4438&idi=2
http://doi.org/10.17771/PUCRio.acad.4438
Resumo: [pt] A previsão de carga é considerada uma poderosa ferramenta no controle e planejamento de sistemas elétricos. Um grande número de pesquisadores têm sugerido, recentemente, diversas técnicas para previsão de carga a curto prazo. Este trabalho estuda a aplicabilidade de modelos lineares. O trabalho pretende ser uma base para uma aplicação real de previsão. Os modelos foram desenvolvidos e testados com dados reais de carga de uma empresa de eletricidade situada no sudeste de Brasil. Todos os modelos são propostos para dados secionais, isto é, a série de carga de cada hora é estudada separadamte como uma série única. Esta abordagem evita a modelagem de padrões intra-dia (perfil da carga) complexos apresentados pela série de carga, que variam durante os dias da semana e nas estações. Três modelos são estudados, primeiro um modelo um modelo SARIMA ajustado por variáveis binárias DASARIMA, adotado como modelo de referência, o segundo um modelo em duas etapas que considera a existência de componentes determinísticos para modelar a tendência, a sazonalidade e os efeitos do calendário, denominado modelo autorregressivo sazonal em dois níveis - TLSAR; e o último um modelo de de memória longa generalizada ajustado por variáveis binárias - DAGLM. Os resultados dos ensaios mostraram que os modelos horários são bem apropriados para uma aplicação de previsão. Os erros de previsão, das duas últimas abordagens, são menores que os do modelo de referência, DASARIMA. O trabalho sugere que este tipo de modelos horários devem ser testados mais completamente a fim de fornecer uma opinião final sobre sua aplicabilidade.