[en] A SMOOTH TRANSITION PERIODIC AUTO REGRESSIVE MODEL FOR SHORT TERM ELECTRICITY LOAD FORECAST
Ano de defesa: | 2007 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=9916&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=9916&idi=2 http://doi.org/10.17771/PUCRio.acad.9916 |
Resumo: | [pt] Essa tese considera um modelo não linear para se obter previsões de curto prazo de carga de energia elétrica. O modelo combina um modelo de múltiplos regimes auto-regressivo com transição suave com um periódico auto-regressivo criando o modelo de múltiplos regimes periódico com transição suave (STPAR). Um método de construção do modelo é desenvolvido com métodos estatísticos simples e um teste de linearidade contra a hipótese de modelo periódico autoregressivo com transição suave. Outros dois destes foram elaborados para se avaliar o modelo estimado: um teste de Multiplicador de Lagrange (LM) para a hipótese de auto-correlação serial dos resíduos e outro teste LM para a hipótese de não linearidade remanescente. Um experimento de Monte Carlo foi implementado para avaliar a performance dos testes propostos. Estimação por mínimos quadrados não lineares é considerado. Finalmente, dados de carga de energia elétrica do estado de New South Wales na Austrália são apresentados e foram usados como exemplo real. Outros modelos foram utilizados para comparar a performance do modelo. |