[en] A SMOOTH TRANSITION PERIODIC AUTO REGRESSIVE MODEL FOR SHORT TERM ELECTRICITY LOAD FORECAST

Detalhes bibliográficos
Ano de defesa: 2007
Autor(a) principal: LUIZ FELIPE MOREIRA DO AMARAL
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=9916&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=9916&idi=2
http://doi.org/10.17771/PUCRio.acad.9916
Resumo: [pt] Essa tese considera um modelo não linear para se obter previsões de curto prazo de carga de energia elétrica. O modelo combina um modelo de múltiplos regimes auto-regressivo com transição suave com um periódico auto-regressivo criando o modelo de múltiplos regimes periódico com transição suave (STPAR). Um método de construção do modelo é desenvolvido com métodos estatísticos simples e um teste de linearidade contra a hipótese de modelo periódico autoregressivo com transição suave. Outros dois destes foram elaborados para se avaliar o modelo estimado: um teste de Multiplicador de Lagrange (LM) para a hipótese de auto-correlação serial dos resíduos e outro teste LM para a hipótese de não linearidade remanescente. Um experimento de Monte Carlo foi implementado para avaliar a performance dos testes propostos. Estimação por mínimos quadrados não lineares é considerado. Finalmente, dados de carga de energia elétrica do estado de New South Wales na Austrália são apresentados e foram usados como exemplo real. Outros modelos foram utilizados para comparar a performance do modelo.