[pt] ANÁLISE NUMÉRICA DE OPERADORES DO TIPO AMBROSETTI-PRODI
Ano de defesa: | 2019 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=37997&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=37997&idi=2 http://doi.org/10.17771/PUCRio.acad.37997 |
Resumo: | [pt] Berger e Podolak apresentaram uma interpretação geométrica do resultado seminal de Ambrosetti e Prodi sobre o comportamento das soluções de certas equações diferenciais parciais elípticas semi-lineares. Consideram-se extensões deste ponto de vista, a partir das quais se desenvolve um algoritmo numérico para resolver as equações. |