[en] ISSUES THAT LEAD TO CODE TECHNICAL DEBT IN MACHINE LEARNING SYSTEMS
Ano de defesa: | 2024 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=67941&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=67941&idi=2 http://doi.org/10.17771/PUCRio.acad.67941 |
Resumo: | [pt] [Contexto] A dívida técnica (DT) em sistemas de aprendizado de máquina (AM), assim como sua contraparte em engenharia de software (ES), tem o potencial de levar a retrabalhos futuros, representando riscos para produtividade, qualidade e moral da equipe. No entanto, compreender melhor os problemas relacionados ao código que levam à DT em sistemas de AM ainda é um campo em aberto. [Objetivo] Este artigo tem como objetivo identificar e discutir a relevância de problemas que levam a DT no código de AM ao longo do ciclo de vida do AM. [Método] O estudo compilou inicialmente uma lista de problemas potenciais que podem levar à DT no código de AM, analisando as fases do ciclo de vida do AM e suas tarefas típicas. Posteriormente, a lista de problemas foi refinada através da avaliação da prevalência e relevância dos problemas que levam à DT no código de AM por meio de feedback coletado de profissionais da indústria em duas sessões de grupos focais. [Resultados] O estudo compilou uma lista inicial de 34 problemas que potencialmente contribuem para DT em código-fonte de sistemas de AM. Através de duas sessões de grupos focais com nove participantes, esta lista foi refinada para 30 problemas que levam à DT relacionada ao código de AM, sendo 24 considerados altamente relevantes. A fase de pré-processamento de dados foi a mais crítica, com 14 problemas considerados altamente relevantes em potencialmente levar a uma DT grave no código de AM. Cinco problemas foram considerados altamente relevantes na fase de criação e treinamento do modelo e quatro na fase de coleta de dados. A lista final de problemas está disponível para a comunidade. [Conclusão] A lista pode ajudar a aumentar a conscientização sobre os problemas a serem tratados ao longo do ciclo de vida do AM para minimizar a acumulação de DT, ajudando a melhorar a manutenibilidade de sistemas de AM. |