[en] OCEANUI: INTERFACE FOR COUNTERFACTUAL EXPLANATIONS GENERATION

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: MOISES HENRIQUE PEREIRA
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=60289&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=60289&idi=2
http://doi.org/10.17771/PUCRio.acad.60289
Resumo: [pt] Atualmente algoritmos de aprendizado de máquina (ML) estão incrivelmente presentes no nosso cotidiano, desde sistemas de recomendação de filmes e músicas até áreas de alto risco como saúde, justiça criminal, finanças e assim por diante, auxiliando na tomada de decisões. Mas a complexidade de criação desses algoritmos de ML também está aumentando, enquanto sua interpretabilidade está diminuindo. Muitos algoritmos e suas decisões não podem ser facilmente explicados por desenvolvedores ou usuários, e os algoritmos também não são autoexplicáveis. Com isso, erros e vieses podem acabar ficando ocultos, o que pode impactar profundamente a vida das pessoas. Devido a isso, iniciativas relacionadas a transparência, explicabilidade e interpretabilidade estão se tornando cada vez mais relevantes, como podemos ver no novo regulamento sobre proteção e tratamento de dados pessoais (GDPR, do inglês General Data Protection Regulation), aprovado em 2016 para a União Europeia, e também na Lei Geral de Proteção de Dados (LGPD) aprovada em 2020 no Brasil. Além de leis e regulamentações tratando sobre o tema, diversos autores consideram necessário o uso de algoritmos inerentemente interpretáveis; outros mostram alternativas para se explicar algoritmos caixa-preta usando explicações locais, tomando a vizinhança de um determinado ponto e então analisando a fronteira de decisão dessa região; enquanto ainda outros estudam o uso de explicações contrafactuais. Seguindo essa linha dos contrafactuais, nos propomos a desenvolver uma interface com usuário para o sistema Optimal Counterfactual Explanations in Tree Ensembles (OCEAN), denominada OceanUI, através do qual o usuário gera explicações contrafactuais plausíveis usando Programação Inteira Mista e Isolation Forest. O propósito desta interface é facilitar a geração de contrafactuais e permitir ao usuário obter um contrafactual personalizado e mais aplicável individualmente, por meio da utilização de restrições e gráficos interativos.