Detalhes bibliográficos
Ano de defesa: |
2023 |
Autor(a) principal: |
Silva, Jurandir Junior de Deus da
 |
Orientador(a): |
Salvini, Rogerio Lopes
 |
Banca de defesa: |
Salvini, Rogerio Lopes,
Silva, Nadia Félix Felipe da,
Alonso, Eduardo José Aguilar |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Goiás
|
Programa de Pós-Graduação: |
Programa de Pós-graduação em Ciência da Computação (INF)
|
Departamento: |
Instituto de Informática - INF (RMG)
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://repositorio.bc.ufg.br/tede/handle/tede/13113
|
Resumo: |
Interpretability is defined as the ability of a human to understand why an AI model makes certain decisions. Interpretability can be achieved through the use of interpretable models, such as linear regression and decision trees, and through model-agnostic interpretation methods, which treat any predictive model as a "black box". Another concept related to interpretability is that of Counterfactual Explanations, which show the minimal changes in inputs that would lead to different results, providing a deeper understanding of the model’s decisions. The approach proposed in this work exploits the explanatory power of Decision Trees to create a method that offers more concise explanations and counterfactual explanations. The results of the study indicate that Decision Trees not only explain the “why” of model decisions, but also show how different attribute values could result in alternative outputs. |