Análise de Sensibilidade Topológica
Ano de defesa: | 2003 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Laboratório Nacional de Computação Científica
Serviço de Análise e Apoio a Formação de Recursos Humanos BR LNCC Programa de Pós-Graduação em Modelagem Computacional |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://tede.lncc.br/handle/tede/21 |
Resumo: | A análise de Sensibilidade Topológica resulta em uma função escalar, denominada Derivada Topológica, que fornece para cada ponto do domínio de definição do problema a sensibilidade de uma dada função custo quando um pequeno furo é criado. No entanto, ao introduzir um furo, não é mais possível estabelecer um homeomorfismo entre os domínios envolvidos. Devido a essa dificuldade matemática a Derivada Topológica pode se tornar restritiva, não obstante seja extremamente geral. No presente trabalho, portanto, é proposto um novo método de cálculo da Derivada Topológica via Análise de Sensibilidade à Mudança de Forma. Este resultado, formalmente demonstrado através de um teorema, conduz a uma metodologia mais simples e geral do que as demais encontradas na literatura. A Análise de Sensibilidade Topológica é então realizada em diversos problemas da Engenharia e os resultados obtidos são empregados para melhorar o projeto de componentes mecânicos mediante a introdução de furos. A mesma teoria desenvolvida para calcular a Derivada Topológica é utilizada para determinar a sensibilidade da função custo ao introduzir uma pequena incrustação numa dada posição do domínio, resultando em um novo conceito denominado Análise de Sensibilidade Configuracional, sendo discutidas suas possíveis aplicações no contexto de Problemas Inversos e de modelagem de fenômenos que experimentam mudanças nas propriedades físicas do meio. Assim, a metodologia aqui desenvolvida é uma ferramenta em potencial tanto de Otimização Topológica quanto de Problemas Inversos e de Modelagem Mecânica, podendo ser vista, a partir de agora, não somente como um método de cálculo da Derivada Topológica, mas como uma promissora área de pesquisa em Modelagem Computacional. |