Segmentação de Imagens via Análise de Sensibilidade

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Pereira, Roberta Ribeiro Guedes
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal da Paraí­ba
BR
Engenharia de Produção
Programa de Pós-Graduação em Engenharia de Produção
UFPB
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpb.br/jspui/handle/tede/5265
Resumo: Segmentation is the phase of the image processing where the input image is divided into constituent parts or objects. In general, the automatic segmentation is one of the most difficult tasks in digital image processing. In this work we used the topological sensitivity analysis as segmentation technique. The idea of segmentation of images via topological sensitivity analysis is to consider the class switching as an infinitesimal non-smooth perturbation of a pixel and calculate the sensitivity to this perturbation by a functional form associated with this disorder. In fact, the algorithms in the literature using the above approach are based on the Mumford-Shah functional whose minimum value is associated with the segmented image. The topological derivative is a scalar field that provides a first order approximation of the functional disorder associated with each pixel for each class of segmentation. Thus, in pixels where the topological derivative takes its most negative values ??will decrease the cost function and the corresponding change will result in better targeting than the previous. This work aims to present a comparative analysis of four segmentation algorithms based on topological derivative, three of them taken from the literature: Top-Shape 1, Shape 2 and Top-Sdt-Discrete, and the last top-Shape3, a new algorithm. The construction of the last algorithm is motivated by the analysis of the previous algorithms and limiting characteristics found, and derived results with higher quality and performance