Síntese de mecanismos flexíveis com restrição em tensão e otimização topológica de estruturas sujeitas a contato e atrito

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Lopes, Cinthia Gomes
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Laboratório Nacional de Computação Científica
Serviço de Análise e Apoio a Formação de Recursos Humanos
Brasil
LNCC
Programa de Pós-Graduação em Modelagem Computacional
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://tede.lncc.br/handle/tede/258
Resumo: A derivada topológica foi rigorosamente definida por Sokolowski e Zochowski em 1999 e, desde então, tem se mostrado uma importante ferramenta para o tratamento de diferentes problemas, dentre os quais destacam-se: otimização topológica, problemas inversos, processamento de imagens, modelagem constitutiva multiescala, análise de sensibilidade à fratura mecânica, modelagem de evolução de dano e análise de sensibilidade para problemas de contato. A derivada topológica é obtida a partir da análise assintótica de soluções clássicas para problemas de valores de contorno em domínios singularmente perturbados, combinada com a análise assintótica de funcionais de forma com relação ao parâmetro que governa o tamanho da perturbação. Neste trabalho, o conceito de derivada topológica é aplicado no contexto de síntese de mecanismos flexíveis com restrição em tensão e otimização topológica de estruturas sujeitas a condição de contato unilateral e atrito dado. Mecanismos flexíveis são estruturas mecânicas compostas por apenas uma peça (estruturas monolíticas) capazes de transformar uma dada força de entrada em um movimento de saída, de acordo com a resposta desejada. Devido à facilidade de produção em escalas milimétricas ou até micrométricas, este tipo de estrutura tem sido utilizada em diferentes aplicações, tais como microcirurgia, manipulação de células, circuitos microeletrônicos. No presente trabalho, uma nova abordagem baseada no conceito de derivada topológica é proposta para tratar o problema de otimização topológica de mecanismos flexíveis. Esta abordagem consiste em introduzir uma restrição na tensão de von Mises ao problema, o que elimina o surgimento de juntas flexíveis, conduzindo a mecanismos que atendem simultaneamente aos critérios de resistência e funcionalidade. Problemas que envolvem condição de contato são naturalmente não lineares e sua principal dificuldade está em não se conhecer, a priori, a área de efetivo contato. Por conta de sua natureza não linear, a técnica de decomposição de domínio em conjunto com o operador pseudo-diferencial Steklov-Poincaré são utilizados para fins de análise assintótica com respeito ao parâmetro que governa o tamanho da perturbação topológica. Como resultado fundamental, a expansão da energia de deformação coincide com a expansão do operador Steklov-Poincaré sobre a fronteira do domínio fictício, o que conduz à derivada topológica associada. Finalmente, este resultado é aplicado em um estudo de caso que consiste na otimização topológica de um olhal pertencente a uma cadeia de olhais da Ponte Hercílio Luz, localizada em Florianópolis - SC.