Composição de coordenadas normais de Rieman locais e geometria poliedral em aprendizado de variedades com aplicações de teoria de folheações
Ano de defesa: | 2015 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Laboratório Nacional de Computação Científica
Serviço de Análise e Apoio a Formação de Recursos Humanos Brasil LNCC Programa de Pós-Graduação em Modelagem Computacional |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://tede.lncc.br/handle/tede/226 |
Resumo: | Técnicas em aprendizado de variedades vêm sendo utilizadas para redução de dimensionalidade em aplicações envolvendo reconhecimento de padrões, mineração de dados e visão computacional. Nesta tese serão descritos trabalhos recentes que fizemos nesta área bem como perspectivas para trabalhos futuros. Primeiramente, propomos uma metodologia denominada aprendizado local de variedades Riemannianas (LRML), a qual recupera a topologia e geometria da variedade utilizando sistemas locais de coordenadas normais computadas via aplicação exponencial. A estratégia local do LRML tem a vantagem de minimizar a acumulação de erros durante o processo de reconstrução da variedade. No entanto, a parametrização obtida não pode ser utilizada como um espaço de representação sem ambiguidades. Além disso, o processo de síntese precisa de triangulação do domínio no espaço de parâmetros para ser realizada de forma eficiente. Abordamos este inconveniente do LRML usando um procedimento de composição para estruturar as vizinhanças de coordenadas normais construindo um espaço de representação que preserva localmente distâncias geodésicas radiais. Adicionamos ainda uma estrutura geométrica baseada na triangulação obtendo uma metodologia eficiente para o processo de síntese. Exploramos também a geração de variedades lineares por partes para análise de dados. Nos experimentos computacionais verificamos a eficiência do LRML combinado com as estruturas de composição e triangulação para a síntese e exploração de dados. Exploramos a aplicação da teoria de folheação para imagens de faces humanas com múltiplas expressões faciais, tal abordagem se mostrou promissora para o estudo do espaço de imagens de faces com diversas expressões faciais distintas. |