Composição de coordenadas normais de Rieman locais e geometria poliedral em aprendizado de variedades com aplicações de teoria de folheações

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Miranda Junior, Gastão Florêncio
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Laboratório Nacional de Computação Científica
Serviço de Análise e Apoio a Formação de Recursos Humanos
Brasil
LNCC
Programa de Pós-Graduação em Modelagem Computacional
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://tede.lncc.br/handle/tede/226
Resumo: Técnicas em aprendizado de variedades vêm sendo utilizadas para redução de dimensionalidade em aplicações envolvendo reconhecimento de padrões, mineração de dados e visão computacional. Nesta tese serão descritos trabalhos recentes que fizemos nesta área bem como perspectivas para trabalhos futuros. Primeiramente, propomos uma metodologia denominada aprendizado local de variedades Riemannianas (LRML), a qual recupera a topologia e geometria da variedade utilizando sistemas locais de coordenadas normais computadas via aplicação exponencial. A estratégia local do LRML tem a vantagem de minimizar a acumulação de erros durante o processo de reconstrução da variedade. No entanto, a parametrização obtida não pode ser utilizada como um espaço de representação sem ambiguidades. Além disso, o processo de síntese precisa de triangulação do domínio no espaço de parâmetros para ser realizada de forma eficiente. Abordamos este inconveniente do LRML usando um procedimento de composição para estruturar as vizinhanças de coordenadas normais construindo um espaço de representação que preserva localmente distâncias geodésicas radiais. Adicionamos ainda uma estrutura geométrica baseada na triangulação obtendo uma metodologia eficiente para o processo de síntese. Exploramos também a geração de variedades lineares por partes para análise de dados. Nos experimentos computacionais verificamos a eficiência do LRML combinado com as estruturas de composição e triangulação para a síntese e exploração de dados. Exploramos a aplicação da teoria de folheação para imagens de faces humanas com múltiplas expressões faciais, tal abordagem se mostrou promissora para o estudo do espaço de imagens de faces com diversas expressões faciais distintas.