Modelagem multiescala do acoplamento eletro-químico em um meio poroso argiloso com dependência do PH
Ano de defesa: | 2007 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Laboratório Nacional de Computação Científica
Serviço de Análise e Apoio a Formação de Recursos Humanos BR LNCC Programa de Pós-Graduação em Modelagem Computacional |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://tede.lncc.br/handle/tede/79 |
Resumo: | Neste trabalho desenvolvemos a modelagem matemática e computacional em três escalas (nano-micro-macro) do acoplamento eletroquímico em um meio poroso argiloso adotando técnicas de homogeneização de estruturas periódicas. Consideramos o meio poroso uma caulinita saturada por uma solução eletrolítica composta por um solvente aquoso e quatro solutos iônicos monovalentes Na+, H+, Cl-, OH-. Na escala nanoscópica adotamos a modelagem da dupla camada elétrica onde o potencial elétrico e a densidade de carga são governados pelo problema de Poisson-Boltzmann. Incorporamos ao modelo nanoscópico as reações de protonação/deprotonação entre o fluido e a superfície da partícula argilosa e quantificamos numericamente a dependência da carga superficial com o pH da solução eletrolítica. Na escala microscópica, ou escala do poro, o movimento da solução aquosa é governado pelo problema de Stokes e o transporte dos íons pelas equações de Nernst-Planck. As equações microscópicas são suplementadas por condições de contorno de deslizamento da componente tangencial do campo de velocidade e de adsorção dos íons que representam a média do modelo posto na escala nanoscópica. A partir dos modelos nanoscópico/microscópico desenvolvemos a homogeneização do problema derivando o modelo na escala de Darcy (macroscópica) com os respectivos problemas de fechamento para os coeficientes das equações efetivas postos na célula periódica. Finalmente discretizamos o modelo macroscópico utilizando o método de volumes finitos e realizamos simulações numéricas em regimes permanente e transitório do processo de descontaminação de um solo argiloso por técnicas de eletrocinética. Os resultados ilustram a forte dependência da eletroremediação com o pH da solução. |