Otimização de portfólio em duas etapas: os efeitos da pré-otimização setorial sobre portfólios de variância mínima e de paridade de risco

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Nielsen, Filipe Ferreira
Orientador(a): Fernandes, Marcelo, Matsumoto, Élia Yathie
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: https://hdl.handle.net/10438/33128
Resumo: Portfólios otimizados com elevada quantidade de ativos dependem de matrizes de covariância de grandes dimensões. Tais casos exigem cuidado extra quanto à consistência do estimador da matriz quando o número de covariâncias estimadas supera o de observações da amostra. Visando melhorar a qualidade de portfólios com grandes dimensões, apresentamos um método de otimização em duas etapas, baseado na capacidade da setorização de ativos em melhorar o estimador amostral da matriz. O método consiste em agrupar os ativos em seus respectivos setores e otimizar cada um dos setores separadamente. Em seguida, otimiza-se os retornos dos portfólios resultantes entre si para determinar o portfólio final. No presente estudo mostramos que, para portfólios de variância mínima e de paridade de risco otimizados entre janeiro de 2015 e janeiro de 2022 com ações do mercado americano, o método traz ganhos de concentração e de rotatividade dos portfólios sem alterar seus retornos ajustados ao risco – ou mesmo melhorando-os em períodos de crise. Atingimos resultados melhores em portfólios com maior influência das covariâncias, como os de variância mínima. Dessa forma, desenvolvemos uma solução para melhorar a otimização de portfólios com grandes dimensões, sendo uma alternativa aos métodos de encolhimento da matriz de covariância e de agrupamento da matriz em blocos.