Formação de preços em leilões duplos : uma abordagem utilizando aprendizado por reforço com multiagentes

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Costa, Felipe
Orientador(a): Silva, Moacyr Alvim Horta Barbosa da
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://hdl.handle.net/10438/31861
Resumo: Algoritmos de Aprendizado por Reforço desenvolvidos recentemente, com o auxílio de técnicas de Deep Learning, têm conquistado avanços significativos em problemas sequenciais de controle de difícil solução. Os casos mais populares são os que envolvem mais de um agente competindo ou cooperando em um mesmo ambiente, como é o caso do jogo de Go ou de Starcraft. Apesar de serem jogos sem consequências para o mundo real, existe uma expectativa que as mesmas técnicas usadas pra a resolução desses problemas possam ser utilizadas para a resolução de problemas reais, que em sua grande maioria envolvem a interação de vários indivíduos, como, por exemplo, a direção autônoma de carros ou a gestão de portfólios de ativos financeiros. A teoria econômica é uma área que possui diversos modelos dinâmicos com mais de um agente. Um desses modelos é o Leilão Duplo, que é um mecanismo onde vendedores e compradores realizam lances sequenciais por um bem. Este trabalho é um estudo inicial da aplicação de técnicas de Aprendizado por Reforço com Multiagentes em Leilões Duplos, com o objetivo de observar comportamentos individuais que sejam compatíveis com o que se espera de agentes racionais, conforme prevista pela teoria econômica.