Detalhes bibliográficos
Ano de defesa: |
2010 |
Autor(a) principal: |
Azevedo, Rafael Moura |
Orientador(a): |
Almeida, Caio Ibsen Rodrigues de |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
https://hdl.handle.net/10438/7824
|
Resumo: |
Este trabalho apresenta um método de apreçamento não paramétrico de derivativos de taxa de juros baseado em teoria da informação. O apreçamento se dá através da distribuição de probabilidade na medida futura, estimando aquela que mais se aproxima da distribuição objetiva. A teoria da informação sugere a forma de medir esta distância. Especificamente, esta dissertação generaliza o método de apreçamento canônico criado por Stutzer (1996), também baseado na teoria da informação, para o caso de derivativos de taxas de juros usando a classe Cressie-Read como critério de distância entre distribuições de probabilidade. |