Um estudo sobre arquitetura de redes neurais aplicado a previsão do retorno de ações brasileiras

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Felizardo, Leonardo Kanashiro
Orientador(a): Pinto, Afonso de Campos
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: https://hdl.handle.net/10438/18042
Resumo: Neste trabalho, é apresentada uma análise estatística sobre as características que entendemos influenciar no desempenho das redes neurais em termos de assertividade. Criamos uma população para análise e desta extraímos a amostra que teve o melhor desempenho assertivo. Verificou-se como as características desta amostra se destacam e afetam as redes neurais. Além disso, fazemos inferências com relação à que tipo de influência as diferentes arquiteturas têm no desempenho das redes neurais. No estudo é realizado a previsão do retorno de ações brasileiras da bolsa de valores de São Paulo para mensurar o erro cometido pelas diferentes arquiteturas de redes neurais construídas.