Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
Garnitskiy, Leonid |
Orientador(a): |
Issler, João Victor |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
https://hdl.handle.net/10438/31426
|
Resumo: |
A importância de monitoramento das principais variáveis macroeconômicas é evidenciada pelo grande esforço que os agentes devotam a esta tarefa. O presente trabalho propõe-se a contribuir para a literatura de previsão econômica, aplicando os modelos de aprendizado de máquina para monitorar diariamente a inflação brasileira medida pelo IPCA. Os resultados obtidos são promissores. O benefício de fazer monitoramento diário da inflação em vez da previsão uma vez por mês é na ordem de 50%-60% em média para quase todos os modelos de aprendizado de máquina considerados. Os modelos que apresentam o melhor desempenho são Regressão de Subconjunto Completo e Floresta Aleatória. Os resultados também mostram que usar técnicas multivariadas de aprendizado de máquina em vez de simples modelos univariados reduz o erro da previsão em até 20%. |