Nowcasting brazilian inflation with machine learning

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Garnitskiy, Leonid
Orientador(a): Issler, João Victor
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: https://hdl.handle.net/10438/31426
Resumo: A importância de monitoramento das principais variáveis macroeconômicas é evidenciada pelo grande esforço que os agentes devotam a esta tarefa. O presente trabalho propõe-se a contribuir para a literatura de previsão econômica, aplicando os modelos de aprendizado de máquina para monitorar diariamente a inflação brasileira medida pelo IPCA. Os resultados obtidos são promissores. O benefício de fazer monitoramento diário da inflação em vez da previsão uma vez por mês é na ordem de 50%-60% em média para quase todos os modelos de aprendizado de máquina considerados. Os modelos que apresentam o melhor desempenho são Regressão de Subconjunto Completo e Floresta Aleatória. Os resultados também mostram que usar técnicas multivariadas de aprendizado de máquina em vez de simples modelos univariados reduz o erro da previsão em até 20%.