Método de otimização da alocação de redes virtuais na estrutura física de uma rede substrato utilizando aprendizado por reforço
Ano de defesa: | 2021 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Centro Universitário FEI, São Bernardo do Campo
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.fei.edu.br/handle/FEI/3445 https://doi.org/10.31414/EE.2021.D.131377 |
Resumo: | As tecnologias 5G possibilitaram novas aplicações em uma infraestrutura de computação de borda que visa atender uma demanda heterogênea e distribuída que unifica hardware, rede e software voltados para habilitação digital. Baseada nos requisitos da Indústria 4.0, esta infraestrutura habilitadora introduz o conceito de fatiamento da rede (Network Slicing), um recurso fundamental que transforma a rede de um paradigma estático em um novo paradigma onde as redes são lógicas, utilizando o modelo de compartilhamento de computação em nuvem e névoa, que deve atender às necessidades de acordos de nível de serviço de forma conveniente e otimizada, exigindo um mecanismo de orquestração para a alocação dinâmica de recursos. Entre esses mecanismos, a incorporação de redes virtuais (VNE) e o gerenciamento dinâmico de recursos (DRM) têm mostrado uma maneira de definir onde e como a tecnologia de computação em névoa deve ser usada. Este trabalho propõe um algoritmo de alocação de recursos, o VNE_CRS, que utiliza uma técnica de inteligência artificial chamada aprendizado por reforço para orquestrar múltiplos domínios da infraestrutura de uma rede 5G, beneficiandose de sua característica de considerar todo o problema, fim a fim, utilizando diferentes aspectos do Indice de Qualidade de Serviço 5G (5QIs). Experimentos foram realizados em simulação comparando o VNE_CRS com algoritmos do estado da arte para alocação VNE em ambiente Edge de múltiplos domínios. Os resultados mostraram que o uso de técnicas de aprendizado por reforço para alocação de recursos de VNE apresentou ganhos de desempenho. Ele pode não apenas simplificar a arquitetura VNE, mas também atuar como um sistema de orquestração completo que visa os resultados estratégicos de longo prazo |