A Profile-Based architecture for traffic forwarding through service function chaining using deep reinforcement learning techniques
Ano de defesa: | 2021 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
Centro Universitário FEI, São Bernardo do Campo
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://doi.org/10.31414/EE.2021.D.131405 https://repositorio.fei.edu.br/handle/FEI/4436 |
Resumo: | Os sistemas de comunicação, como por exemplo as redes móveis de quinta geração (5G) têm se desenvolvido rapidamente e devido à esta evolução, o uso dos seus recursos tem se tornado mais complexo. Assim, são necessários novos métodos para a concepção das redes e uma das tecnologias para tal é o Encadeamento de Funções de Serviço que permite o tráfego através de Funções de Rede Virtualizadas flexibilizando o uso dos recursos. Entretanto, há alguns desafios para sua implementação, como por exemplo o volume de dados gerados pelas novas aplicações. O Aprendizado por Reforço Profundo tem sido usado para resolver diversos problemas computacionais, inclusive aqueles relacionados às redes de comunicação. Para atingir os objetivos de otimização de recursos são necessários: a identificação e tratamento do tráfego de rede e o seu correto roteamento pelos dispositivos. O objetivo deste trabalho é investigar como as técnicas de Aprendizado por Reforço Profundo combinadas com a arquitetura de Encadeamento de Funções de Serviços podem proporcionar um mecanismo eficiente de identificação e roteamento de tráfego baseado em perfis, auxiliando os dispositivos responsáveis pelo controle da rede a reconhecer comportamentos indesejáveis e tomar as ações necessárias. Para isto, será proposta uma implementação prática para demonstrar como estas técnicas podem ser aplicadas |