Interpretação e reconhecimento de padrões para avaliação de dor em imagens faciais de recém-nascidos
Ano de defesa: | 2020 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Centro Universitário FEI, São Bernardo do Campo
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.fei.edu.br/handle/FEI/3196 https://doi.org/10.31414/EE.2020.D.131302 |
Resumo: | Analisar a dor em recém-nascidos se tornou um estudo de relevância nas últimas décadas dada a impossibilidade de se conseguir indicar objetivamente qual a localização e intensidade deste fenômeno doloroso. Ao longo dos últimos anos, métodos de detecção e avaliação de dor foram capazes de classificar dor através de imagens faciais de bebês recém-nascidos, utilizando modelos estatísticos, aprendizado de máquina e aprendizado profundo. Neste contexto, há interesse dos profissionais da saúde em terem disponível ferramentas computacionais capazes de explicitar não somente o nível potencial de dor experienciado pelo recém-nascido, mas também as regiões faciais de maior relevância para o fenômeno dor. O objetivo desta dissertação é desenvolver um arcabouço computacional de interpretação e reconhecimento de padrões em imagens de faces para avaliação automática de dor em bebês a termo. Mais especificamente, este trabalho concentra-se na investigação, implementação e integração de técnicas de detecção, segmentação, normalização espacial e classificação de imagens de faces baseadas em informações extraídas por mineração estatística de dados. Por fim, o arcabouço desenvolvido aqui, avaliado com uma taxa de acerto (limite superior) de aproximadamente 96% para a base COPE e 77% para a base UNIFESP, mostra que é possível não somente classificar estatisticamente dor e não-dor através de imagens de faces, mas também evidenciar regiões faciais discriminantes para o fenômeno dor, auxiliando na construção de escalas pediátricas de dor mais gerais e assertivas |