Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Nascimento, A. S. |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Centro Universitário FEI, São Bernardo do Campo
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.fei.edu.br/handle/FEI/270
|
Resumo: |
A tecnologia Silício-sobre-Isolante (Silicon-on-Insulator - SOI) tem evoluído e oferecido novas arquiteturas para os dispositivos. Dentre os novos dispositivos, o FinFET e o UTBB estão entre os poucos que permitem o escalamento para tecnologias abaixo de 10 nm, quando se trata de maior imunidade aos efeitos de canal curto. Uma ferramenta importante para auxiliar o entendimento dos dispositivos e facilitar a predição de novas tecnologias são os modelos analíticos, que descrevem o comportamento de alguma característica ou efeito presente nos transistores. Neste trabalho, foram estudados e propostos modelos analíticos de resistência parasitária e corrente de dreno em FinFETs e de DIBL (Drain Induced Barrier Lowering – Diminuição da Barreira de potencial Induzida pelo Dreno) em UTBBs. Esses são efeitos parasitários importantes nesses dispositivos que são utilizados como critérios para dizer se uma tecnologia tem ou não uma boa imunidade aos efeitos de canal curto. Em FinFETs, é feita a avaliação dos modelos já existentes para a resistência parasitária, além do estudo e proposta de evolução do modelo de corrente de dreno SDDGM, proposto por Cerdeira et al em 2008, acrescentando a ele a resistência parasitária modelada fisicamente, que antes fazia parte do modelo apenas como um parâmetro de ajuste. A análise dos três modelos de resistência parasitária presentes na literatura mostrou que o modelo de Pereira e Giacomini é o mais adequado, apresentando erros percentuais abaixo de 10% para diferentes características de fonte e dreno, quando comparado aos resultados de simulações numéricas tridimensionais e de dados experimentais de resistência parasitária. Também foi feita a integração do modelo de corrente com o modelo da resistência parasitária, com base na degradação das tensões efetivas aplicadas à porta e ao dreno do dispositivo, permitindo assim a substituição de um parâmetro de ajuste pela resistência parasitária calculada fisicamente através do modelo proposto por Pereira e Giacomini. Essa alteração não acrescenta nenhum parâmetro de ajuste adicional ao modelo de corrente de dreno. O modelo completo de corrente proposto foi avaliado através de simulações numéricas tridimensionais e apresentou boa concordância, reproduzindo muito bem as curvas de corrente de dreno para caracteristícas e polarizações diversas. Em UTBBs, o comportamento do DIBL é investigado em detalhes para temperaturas até 150ºC. A análise é baseada em dados experimentais, simulações numéricas de dispositivos e modelos publicados na literatura. As medidas revelaram aumento do DIBL com o aumento da temperatura. Simulações de dispositivos realizadas para diferentes estruturas de camada fina (totalmente depletadas) mostraram a generalidade desse comportamento. Três modelos analíticos disponíveis na literatura para o cálculo do DIBL: modelo VDT, modelo de Arshad et al e modelo de Fasarakis et al foram avaliados quando aplicados para diferentes temperaturas. Embora o modelo de Fasarakis tenha apresentado os valores mais próximos aos experimentais, a dependência do DIBL com a temperatura foi superestimada para dispositivos com canal mais curto e subestimada para dispositivos com canal mais longo. Foi proposta neste trabalho uma forma de adequar o modelo de Fasarakis et al, através da inclusão da carga de inversão e da posição do canal dependente da temperatura, com o intuito de reproduzir corretamente a variação do DIBL com a temperatura para comprimentos de canal diferentes. Os resultados obtidos mostraram uma boa concordância com os dados experimentais e um significativo ganho de precisão em relação aos modelos da literatura, principalmente para comprimentos de canal na faixa de aplicações de tensão ultra baixa digital e com bom desempenho analógico para a tecnologia estudada. |