Detalhes bibliográficos
Ano de defesa: |
2024 |
Autor(a) principal: |
Calatrone, Julia Diniz |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Escola Nacional de Administração Pública - Enap
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://repositorio.enap.gov.br/handle/1/7900
|
Resumo: |
Medicamentos que não atendem a padrões mínimos de qualidade, chamados substandard são um grande problema de saúde pública, pondo em risco a saúde dos consumidores. As agências reguladoras nem sempre possuem capacidade operacional para verificar todas as atividades de produção farmacêutica, e devem atuar baseadas no risco sanitário. O risco sanitário para direcionamento das ações de fiscalização comumente é determinado de forma empírica. Apesar dessa abordagem ter uma performance tradicionalmente aceitável, é necessário buscar modelos que otimizem custo e efetividade, minimizado assim a chance de que um medicamento substandard seja comercializado. Este trabalho faz uso de dados coletados de forma estruturada no ambiente regulatório da Anvisa para prever medicamentos substandard por meio de modelos de machine learning. Essa abordagem inovadora na área da regulação sanitária abre oportunidades para a reformulação de processos de trabalho de fiscalização e também para a revisão da política de gerenciamento de dados institucional. No trabalho foram utilizados os modelos LASSO, Ridge e Elastic net para classificação, aplicados por meio do software R. As métricas de desempenho empregadas foram acurácia e ROC AUC. Todos os modelos atingiram resultados semelhantes de acurácia de aproximadamente 99%. O modelo LASSO se mostrou o mais adequado para a aplicação prática, por ter o melhor desempenho de ROC AUC com um valor de 0,99, e usando o menor número de variáveis. |