Uso de aprendizado de máquina na avaliação de políticas públicas: uma revisão de escopo

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Vieira, Gutemberg Assunção
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Escola Nacional de Administração Pública - Enap
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.enap.gov.br/handle/1/7784
Resumo: Cada vez mais o aprendizado de máquina tem sido aplicado para desempenhar atividades que requeriam a execução por seres humanos, inclusive no âmbito governamental. Nesse contexto, questiona-se como ocorre a utilização desse tipo de ferramenta na avaliação de políticas públicas e sobre quais intervenções já foram aplicadas. Dito isso, o objetivo desta dissertação é o mapeamento de evidências de uso de aprendizado de máquina na avaliação de políticas públicas com a finalidade de ser utilizado como fonte de referência por pesquisadores, profissionais e outros interessados no assunto. Foi utilizada a metodologia de revisão de escopo com implementação de revisão cegada para redução de viés na seleção dos estudos. Ao final foram escolhidos 64 estudos para mapeamento, agrupamento, sumarização e reporte nas perspectivas de métodos de aprendizado de máquina empregados, objetos avaliados e características gerais das publicações. Confirmou-se que se trata de uma área de aplicação recente em termos de publicação, com a maioria dos estudos concentrados nos últimos cinco anos, e não abrange ações da maioria das áreas governamentais. Não foi identificado estudo no Brasil dentro do escopo definido e estratégia de busca implementada, destacando-se a oportunidade de pesquisa aplicada no tema. Os métodos de aprendizado de máquina foram codificados quanto ao objetivo de aplicação, resultando em nove formas de aplicação. Todos os dados mapeados, codificações criadas, bem como outras menções às tecnologias empregadas foram incluídos no texto e nos apêndices para referências futuras.