Potential of sentinel multispectral images in the detection of nematodes in coffee culture

Bibliographic Details
Main Author: Xavier, Laura Cristina Moura
Publication Date: 2019
Other Authors: de Abreu Júnior, Carlos Alberto Matias, Martins, George Deroco, Bravo, João Vitor Meza, Vieira, Bruno Sérgio
Format: Article
Language: por
Source: Revista Brasileira de Geomática
Download full: https://periodicos.utfpr.edu.br/rbgeo/article/view/8701
Summary: In this paper we have evaluated the potential of using free multispectral images for identifying nematode infection in a coffee crop. First, we have adopted a study area within a known condition of the spatial distribution of Nematode infection (N. paranaenses) on the coffee crop. Secondly, we analyzed the variation of spectral response of infected and non-infected coffee trees, on different bands of the Sentinel 2 satellite. As hypothesis we expected that healthy trees would respond differently of those non-healthy. Due this first analysis, we have detected bands whose variation on the reflectance could aid us on the image classification process. Thus, we detected those variations, while observing the Red, NIR, Red Edge 3-4 bands. In the next step, we have made the image classification (neural network) by applying different combinations of images sources, considering the results from the previous step, plus an image representing the NDVI index. The combination of Red, NIR, and NDVI bands as classification input gave us the best result when compared to the other combination. This combination allowed us to detect Nematode infection areas, and to perform the image classification with 97.91% of accuracy. Therefore, we have demonstrated the positive potential of using free images from the Sentinel 2 for identifying Nematode infections in coffee crops. This is a remarkable result, once we have produced an innovative, low-cost and confident solution.
id UTFPR-14_5c71a1c90bafd25a57469f00b99b8aa3
oai_identifier_str oai:periodicos.utfpr:article/8701
network_acronym_str UTFPR-14
network_name_str Revista Brasileira de Geomática
repository_id_str
spelling Potential of sentinel multispectral images in the detection of nematodes in coffee culturePotencial de imagens multiespectrais sentinel 2 na detecção de nematoides na cultura cafeeiraGeofísica - Sensoriamento RemotoImagens Multiespectrais; Nematoides; Cafeeiro.Multispectral images; Nematoids; CoffeeIn this paper we have evaluated the potential of using free multispectral images for identifying nematode infection in a coffee crop. First, we have adopted a study area within a known condition of the spatial distribution of Nematode infection (N. paranaenses) on the coffee crop. Secondly, we analyzed the variation of spectral response of infected and non-infected coffee trees, on different bands of the Sentinel 2 satellite. As hypothesis we expected that healthy trees would respond differently of those non-healthy. Due this first analysis, we have detected bands whose variation on the reflectance could aid us on the image classification process. Thus, we detected those variations, while observing the Red, NIR, Red Edge 3-4 bands. In the next step, we have made the image classification (neural network) by applying different combinations of images sources, considering the results from the previous step, plus an image representing the NDVI index. The combination of Red, NIR, and NDVI bands as classification input gave us the best result when compared to the other combination. This combination allowed us to detect Nematode infection areas, and to perform the image classification with 97.91% of accuracy. Therefore, we have demonstrated the positive potential of using free images from the Sentinel 2 for identifying Nematode infections in coffee crops. This is a remarkable result, once we have produced an innovative, low-cost and confident solution.Neste trabalho, avaliou-se o potencial do uso de imagens multiespectrais livres para identificar a infecção por nematoides em uma lavoura cafeeira. Adotou-se uma área de estudo com ocorrência infecção por nematoides (N. paranaenses) na cultura cafeeira. Em segundo lugar, analisou-se a variação da resposta espectral do café infectados e sadio, em bandas do satélite Sentinel 2. Como hipótese, esperava-se que plantas saudáveisrespondessem diferentemente das sadias. Assim, detectamos bandas cuja variação na refletância poderia auxiliar no processo de classificação de imagens. Assim, detectou-se essas variações, observando as bandas (vermelha, IVP, vermelho limítrofe 3-4). Posteriormente, fizemos a classificação da imagem (rede neural) aplicando diferentes combinações de imagens, considerando os resultados da etapa anterior, além de uma imagem representando o índice NDVI. A combinação das bandas Red, NIR e NDVI como entrada de classificação proporcionou o melhor resultado quando comparado com as outras combinações. Essa combinação permitiu detectar áreas de infecção por nematoides e realizar a classificação da imagem com 97,91% de acurácia. Portanto, obteve-se o potencial positivo do uso de imagens livres do Sentinel 2 para identificar infecções por nematoides em lavouras cafeeiras. Este é um resultado notável, uma vez que se produziu uma solução inovadora, de baixo custo e confiante.Universidade Tecnológica Federal do Paraná (UTFPR)Xavier, Laura Cristina Mourade Abreu Júnior, Carlos Alberto MatiasMartins, George DerocoBravo, João Vitor MezaVieira, Bruno Sérgio2019-10-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.utfpr.edu.br/rbgeo/article/view/870110.3895/rbgeo.v7n2.8701Revista Brasileira de Geomática; v. 7, n. 2 (2019); 095-114Revista Brasileira de Geomática; v. 7, n. 2 (2019); 095-1142317-428510.3895/rbgeo.v7n2reponame:Revista Brasileira de Geomáticainstname:Universidade Tecnológica Federal do Paraná (UTFPR)instacron:UTFPRporhttps://periodicos.utfpr.edu.br/rbgeo/article/view/8701/6643Direitos autorais 2019 CC-BYinfo:eu-repo/semantics/openAccess2020-07-15T21:59:36Zoai:periodicos.utfpr:article/8701Revistahttps://periodicos.utfpr.edu.br/rbgeoPUBhttps://periodicos.utfpr.edu.br/rbgeo/oairbgeo-pb@utfpr.edu.br || rodriguesaguiar@utfpr.edu.br || periodicos@utfpr.edu.br2317-42852317-4285opendoar:2020-07-15T21:59:36Revista Brasileira de Geomática - Universidade Tecnológica Federal do Paraná (UTFPR)false
dc.title.none.fl_str_mv Potential of sentinel multispectral images in the detection of nematodes in coffee culture
Potencial de imagens multiespectrais sentinel 2 na detecção de nematoides na cultura cafeeira
title Potential of sentinel multispectral images in the detection of nematodes in coffee culture
spellingShingle Potential of sentinel multispectral images in the detection of nematodes in coffee culture
Xavier, Laura Cristina Moura
Geofísica - Sensoriamento Remoto
Imagens Multiespectrais; Nematoides; Cafeeiro.
Multispectral images; Nematoids; Coffee
title_short Potential of sentinel multispectral images in the detection of nematodes in coffee culture
title_full Potential of sentinel multispectral images in the detection of nematodes in coffee culture
title_fullStr Potential of sentinel multispectral images in the detection of nematodes in coffee culture
title_full_unstemmed Potential of sentinel multispectral images in the detection of nematodes in coffee culture
title_sort Potential of sentinel multispectral images in the detection of nematodes in coffee culture
author Xavier, Laura Cristina Moura
author_facet Xavier, Laura Cristina Moura
de Abreu Júnior, Carlos Alberto Matias
Martins, George Deroco
Bravo, João Vitor Meza
Vieira, Bruno Sérgio
author_role author
author2 de Abreu Júnior, Carlos Alberto Matias
Martins, George Deroco
Bravo, João Vitor Meza
Vieira, Bruno Sérgio
author2_role author
author
author
author
dc.contributor.none.fl_str_mv

dc.contributor.author.fl_str_mv Xavier, Laura Cristina Moura
de Abreu Júnior, Carlos Alberto Matias
Martins, George Deroco
Bravo, João Vitor Meza
Vieira, Bruno Sérgio
dc.subject.por.fl_str_mv Geofísica - Sensoriamento Remoto
Imagens Multiespectrais; Nematoides; Cafeeiro.
Multispectral images; Nematoids; Coffee
topic Geofísica - Sensoriamento Remoto
Imagens Multiespectrais; Nematoides; Cafeeiro.
Multispectral images; Nematoids; Coffee
description In this paper we have evaluated the potential of using free multispectral images for identifying nematode infection in a coffee crop. First, we have adopted a study area within a known condition of the spatial distribution of Nematode infection (N. paranaenses) on the coffee crop. Secondly, we analyzed the variation of spectral response of infected and non-infected coffee trees, on different bands of the Sentinel 2 satellite. As hypothesis we expected that healthy trees would respond differently of those non-healthy. Due this first analysis, we have detected bands whose variation on the reflectance could aid us on the image classification process. Thus, we detected those variations, while observing the Red, NIR, Red Edge 3-4 bands. In the next step, we have made the image classification (neural network) by applying different combinations of images sources, considering the results from the previous step, plus an image representing the NDVI index. The combination of Red, NIR, and NDVI bands as classification input gave us the best result when compared to the other combination. This combination allowed us to detect Nematode infection areas, and to perform the image classification with 97.91% of accuracy. Therefore, we have demonstrated the positive potential of using free images from the Sentinel 2 for identifying Nematode infections in coffee crops. This is a remarkable result, once we have produced an innovative, low-cost and confident solution.
publishDate 2019
dc.date.none.fl_str_mv 2019-10-10
dc.type.none.fl_str_mv

dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.utfpr.edu.br/rbgeo/article/view/8701
10.3895/rbgeo.v7n2.8701
url https://periodicos.utfpr.edu.br/rbgeo/article/view/8701
identifier_str_mv 10.3895/rbgeo.v7n2.8701
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://periodicos.utfpr.edu.br/rbgeo/article/view/8701/6643
dc.rights.driver.fl_str_mv Direitos autorais 2019 CC-BY
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Direitos autorais 2019 CC-BY
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Tecnológica Federal do Paraná (UTFPR)
publisher.none.fl_str_mv Universidade Tecnológica Federal do Paraná (UTFPR)
dc.source.none.fl_str_mv Revista Brasileira de Geomática; v. 7, n. 2 (2019); 095-114
Revista Brasileira de Geomática; v. 7, n. 2 (2019); 095-114
2317-4285
10.3895/rbgeo.v7n2
reponame:Revista Brasileira de Geomática
instname:Universidade Tecnológica Federal do Paraná (UTFPR)
instacron:UTFPR
instname_str Universidade Tecnológica Federal do Paraná (UTFPR)
instacron_str UTFPR
institution UTFPR
reponame_str Revista Brasileira de Geomática
collection Revista Brasileira de Geomática
repository.name.fl_str_mv Revista Brasileira de Geomática - Universidade Tecnológica Federal do Paraná (UTFPR)
repository.mail.fl_str_mv rbgeo-pb@utfpr.edu.br || rodriguesaguiar@utfpr.edu.br || periodicos@utfpr.edu.br
_version_ 1833827571554320384