Potential of sentinel multispectral images in the detection of nematodes in coffee culture
Main Author: | |
---|---|
Publication Date: | 2019 |
Other Authors: | , , , |
Format: | Article |
Language: | por |
Source: | Revista Brasileira de Geomática |
Download full: | https://periodicos.utfpr.edu.br/rbgeo/article/view/8701 |
Summary: | In this paper we have evaluated the potential of using free multispectral images for identifying nematode infection in a coffee crop. First, we have adopted a study area within a known condition of the spatial distribution of Nematode infection (N. paranaenses) on the coffee crop. Secondly, we analyzed the variation of spectral response of infected and non-infected coffee trees, on different bands of the Sentinel 2 satellite. As hypothesis we expected that healthy trees would respond differently of those non-healthy. Due this first analysis, we have detected bands whose variation on the reflectance could aid us on the image classification process. Thus, we detected those variations, while observing the Red, NIR, Red Edge 3-4 bands. In the next step, we have made the image classification (neural network) by applying different combinations of images sources, considering the results from the previous step, plus an image representing the NDVI index. The combination of Red, NIR, and NDVI bands as classification input gave us the best result when compared to the other combination. This combination allowed us to detect Nematode infection areas, and to perform the image classification with 97.91% of accuracy. Therefore, we have demonstrated the positive potential of using free images from the Sentinel 2 for identifying Nematode infections in coffee crops. This is a remarkable result, once we have produced an innovative, low-cost and confident solution. |
id |
UTFPR-14_5c71a1c90bafd25a57469f00b99b8aa3 |
---|---|
oai_identifier_str |
oai:periodicos.utfpr:article/8701 |
network_acronym_str |
UTFPR-14 |
network_name_str |
Revista Brasileira de Geomática |
repository_id_str |
|
spelling |
Potential of sentinel multispectral images in the detection of nematodes in coffee culturePotencial de imagens multiespectrais sentinel 2 na detecção de nematoides na cultura cafeeiraGeofísica - Sensoriamento RemotoImagens Multiespectrais; Nematoides; Cafeeiro.Multispectral images; Nematoids; CoffeeIn this paper we have evaluated the potential of using free multispectral images for identifying nematode infection in a coffee crop. First, we have adopted a study area within a known condition of the spatial distribution of Nematode infection (N. paranaenses) on the coffee crop. Secondly, we analyzed the variation of spectral response of infected and non-infected coffee trees, on different bands of the Sentinel 2 satellite. As hypothesis we expected that healthy trees would respond differently of those non-healthy. Due this first analysis, we have detected bands whose variation on the reflectance could aid us on the image classification process. Thus, we detected those variations, while observing the Red, NIR, Red Edge 3-4 bands. In the next step, we have made the image classification (neural network) by applying different combinations of images sources, considering the results from the previous step, plus an image representing the NDVI index. The combination of Red, NIR, and NDVI bands as classification input gave us the best result when compared to the other combination. This combination allowed us to detect Nematode infection areas, and to perform the image classification with 97.91% of accuracy. Therefore, we have demonstrated the positive potential of using free images from the Sentinel 2 for identifying Nematode infections in coffee crops. This is a remarkable result, once we have produced an innovative, low-cost and confident solution.Neste trabalho, avaliou-se o potencial do uso de imagens multiespectrais livres para identificar a infecção por nematoides em uma lavoura cafeeira. Adotou-se uma área de estudo com ocorrência infecção por nematoides (N. paranaenses) na cultura cafeeira. Em segundo lugar, analisou-se a variação da resposta espectral do café infectados e sadio, em bandas do satélite Sentinel 2. Como hipótese, esperava-se que plantas saudáveisrespondessem diferentemente das sadias. Assim, detectamos bandas cuja variação na refletância poderia auxiliar no processo de classificação de imagens. Assim, detectou-se essas variações, observando as bandas (vermelha, IVP, vermelho limítrofe 3-4). Posteriormente, fizemos a classificação da imagem (rede neural) aplicando diferentes combinações de imagens, considerando os resultados da etapa anterior, além de uma imagem representando o índice NDVI. A combinação das bandas Red, NIR e NDVI como entrada de classificação proporcionou o melhor resultado quando comparado com as outras combinações. Essa combinação permitiu detectar áreas de infecção por nematoides e realizar a classificação da imagem com 97,91% de acurácia. Portanto, obteve-se o potencial positivo do uso de imagens livres do Sentinel 2 para identificar infecções por nematoides em lavouras cafeeiras. Este é um resultado notável, uma vez que se produziu uma solução inovadora, de baixo custo e confiante.Universidade Tecnológica Federal do Paraná (UTFPR)Xavier, Laura Cristina Mourade Abreu Júnior, Carlos Alberto MatiasMartins, George DerocoBravo, João Vitor MezaVieira, Bruno Sérgio2019-10-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.utfpr.edu.br/rbgeo/article/view/870110.3895/rbgeo.v7n2.8701Revista Brasileira de Geomática; v. 7, n. 2 (2019); 095-114Revista Brasileira de Geomática; v. 7, n. 2 (2019); 095-1142317-428510.3895/rbgeo.v7n2reponame:Revista Brasileira de Geomáticainstname:Universidade Tecnológica Federal do Paraná (UTFPR)instacron:UTFPRporhttps://periodicos.utfpr.edu.br/rbgeo/article/view/8701/6643Direitos autorais 2019 CC-BYinfo:eu-repo/semantics/openAccess2020-07-15T21:59:36Zoai:periodicos.utfpr:article/8701Revistahttps://periodicos.utfpr.edu.br/rbgeoPUBhttps://periodicos.utfpr.edu.br/rbgeo/oairbgeo-pb@utfpr.edu.br || rodriguesaguiar@utfpr.edu.br || periodicos@utfpr.edu.br2317-42852317-4285opendoar:2020-07-15T21:59:36Revista Brasileira de Geomática - Universidade Tecnológica Federal do Paraná (UTFPR)false |
dc.title.none.fl_str_mv |
Potential of sentinel multispectral images in the detection of nematodes in coffee culture Potencial de imagens multiespectrais sentinel 2 na detecção de nematoides na cultura cafeeira |
title |
Potential of sentinel multispectral images in the detection of nematodes in coffee culture |
spellingShingle |
Potential of sentinel multispectral images in the detection of nematodes in coffee culture Xavier, Laura Cristina Moura Geofísica - Sensoriamento Remoto Imagens Multiespectrais; Nematoides; Cafeeiro. Multispectral images; Nematoids; Coffee |
title_short |
Potential of sentinel multispectral images in the detection of nematodes in coffee culture |
title_full |
Potential of sentinel multispectral images in the detection of nematodes in coffee culture |
title_fullStr |
Potential of sentinel multispectral images in the detection of nematodes in coffee culture |
title_full_unstemmed |
Potential of sentinel multispectral images in the detection of nematodes in coffee culture |
title_sort |
Potential of sentinel multispectral images in the detection of nematodes in coffee culture |
author |
Xavier, Laura Cristina Moura |
author_facet |
Xavier, Laura Cristina Moura de Abreu Júnior, Carlos Alberto Matias Martins, George Deroco Bravo, João Vitor Meza Vieira, Bruno Sérgio |
author_role |
author |
author2 |
de Abreu Júnior, Carlos Alberto Matias Martins, George Deroco Bravo, João Vitor Meza Vieira, Bruno Sérgio |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
|
dc.contributor.author.fl_str_mv |
Xavier, Laura Cristina Moura de Abreu Júnior, Carlos Alberto Matias Martins, George Deroco Bravo, João Vitor Meza Vieira, Bruno Sérgio |
dc.subject.por.fl_str_mv |
Geofísica - Sensoriamento Remoto Imagens Multiespectrais; Nematoides; Cafeeiro. Multispectral images; Nematoids; Coffee |
topic |
Geofísica - Sensoriamento Remoto Imagens Multiespectrais; Nematoides; Cafeeiro. Multispectral images; Nematoids; Coffee |
description |
In this paper we have evaluated the potential of using free multispectral images for identifying nematode infection in a coffee crop. First, we have adopted a study area within a known condition of the spatial distribution of Nematode infection (N. paranaenses) on the coffee crop. Secondly, we analyzed the variation of spectral response of infected and non-infected coffee trees, on different bands of the Sentinel 2 satellite. As hypothesis we expected that healthy trees would respond differently of those non-healthy. Due this first analysis, we have detected bands whose variation on the reflectance could aid us on the image classification process. Thus, we detected those variations, while observing the Red, NIR, Red Edge 3-4 bands. In the next step, we have made the image classification (neural network) by applying different combinations of images sources, considering the results from the previous step, plus an image representing the NDVI index. The combination of Red, NIR, and NDVI bands as classification input gave us the best result when compared to the other combination. This combination allowed us to detect Nematode infection areas, and to perform the image classification with 97.91% of accuracy. Therefore, we have demonstrated the positive potential of using free images from the Sentinel 2 for identifying Nematode infections in coffee crops. This is a remarkable result, once we have produced an innovative, low-cost and confident solution. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-10-10 |
dc.type.none.fl_str_mv |
|
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos.utfpr.edu.br/rbgeo/article/view/8701 10.3895/rbgeo.v7n2.8701 |
url |
https://periodicos.utfpr.edu.br/rbgeo/article/view/8701 |
identifier_str_mv |
10.3895/rbgeo.v7n2.8701 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://periodicos.utfpr.edu.br/rbgeo/article/view/8701/6643 |
dc.rights.driver.fl_str_mv |
Direitos autorais 2019 CC-BY info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Direitos autorais 2019 CC-BY |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Tecnológica Federal do Paraná (UTFPR) |
publisher.none.fl_str_mv |
Universidade Tecnológica Federal do Paraná (UTFPR) |
dc.source.none.fl_str_mv |
Revista Brasileira de Geomática; v. 7, n. 2 (2019); 095-114 Revista Brasileira de Geomática; v. 7, n. 2 (2019); 095-114 2317-4285 10.3895/rbgeo.v7n2 reponame:Revista Brasileira de Geomática instname:Universidade Tecnológica Federal do Paraná (UTFPR) instacron:UTFPR |
instname_str |
Universidade Tecnológica Federal do Paraná (UTFPR) |
instacron_str |
UTFPR |
institution |
UTFPR |
reponame_str |
Revista Brasileira de Geomática |
collection |
Revista Brasileira de Geomática |
repository.name.fl_str_mv |
Revista Brasileira de Geomática - Universidade Tecnológica Federal do Paraná (UTFPR) |
repository.mail.fl_str_mv |
rbgeo-pb@utfpr.edu.br || rodriguesaguiar@utfpr.edu.br || periodicos@utfpr.edu.br |
_version_ |
1833827571554320384 |