Complementary Romanovski–Routh Polynomials, Orthogonal Polynomials on the Unit Circle, and Extended Coulomb Wave Functions
| Main Author: | |
|---|---|
| Publication Date: | 2020 |
| Other Authors: | , , |
| Format: | Article |
| Language: | eng |
| Source: | Repositório Institucional da UNESP |
| Download full: | http://dx.doi.org/10.1007/s00025-020-1167-8 http://hdl.handle.net/11449/200085 |
Summary: | In a recent paper (Martínez-Finkelshtein et al. in Proc Am Math Soc 147:2625–2640, 2019) some interesting results were obtained concerning complementary Romanovski–Routh polynomials, a class of orthogonal polynomials on the unit circle and extended regular Coulomb wave functions. The class of orthogonal polynomials here are generalization of the class of circular Jacobi polynomials. In the present paper, in addition to looking at some further properties of the complementary Romanovski–Routh polynomials and associated orthogonal polynomials on the unit circle, behaviour of the zeros of these extended Coulomb wave functions are also studied. |
| id |
UNSP_f8fb94ec095cae684691f2e7fe152ecd |
|---|---|
| oai_identifier_str |
oai:repositorio.unesp.br:11449/200085 |
| network_acronym_str |
UNSP |
| network_name_str |
Repositório Institucional da UNESP |
| repository_id_str |
2946 |
| spelling |
Complementary Romanovski–Routh Polynomials, Orthogonal Polynomials on the Unit Circle, and Extended Coulomb Wave Functionsorthogonal polynomials on the unit circlepara-orthogonal polynomialsRomanovski–Routh polynomialssecond order differential equationsIn a recent paper (Martínez-Finkelshtein et al. in Proc Am Math Soc 147:2625–2640, 2019) some interesting results were obtained concerning complementary Romanovski–Routh polynomials, a class of orthogonal polynomials on the unit circle and extended regular Coulomb wave functions. The class of orthogonal polynomials here are generalization of the class of circular Jacobi polynomials. In the present paper, in addition to looking at some further properties of the complementary Romanovski–Routh polynomials and associated orthogonal polynomials on the unit circle, behaviour of the zeros of these extended Coulomb wave functions are also studied.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Junta de AndalucíaEuropean Regional Development FundDepartament of Mathematics Baylor UniversityDepartamento de Matemática Aplicada IBILCE UNESP-Universidade Estadual Paulista, São José do Rio PretoSchool of Mathematical Sciences Shanghai Jiao Tong UniversityDepartamento de Matemática Aplicada IBILCE UNESP-Universidade Estadual Paulista, São José do Rio PretoFAPESP: 2016/09906-0FAPESP: 2017/04358-8CNPq: 304087/2018-1Junta de Andalucía: FQM-229European Regional Development Fund: MTM2017-89941-PBaylor UniversityUniversidade Estadual Paulista (Unesp)Shanghai Jiao Tong UniversityMartínez-Finkelshtein, A.Silva Ribeiro, L. L. [UNESP]Sri Ranga, A. [UNESP]Tyaglov, M.2020-12-12T01:57:19Z2020-12-12T01:57:19Z2020-03-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1007/s00025-020-1167-8Results in Mathematics, v. 75, n. 1, 2020.1420-90121422-6383http://hdl.handle.net/11449/20008510.1007/s00025-020-1167-82-s2.0-85079722002Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengResults in Mathematicsinfo:eu-repo/semantics/openAccess2024-11-01T14:44:02Zoai:repositorio.unesp.br:11449/200085Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-11-01T14:44:02Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
| dc.title.none.fl_str_mv |
Complementary Romanovski–Routh Polynomials, Orthogonal Polynomials on the Unit Circle, and Extended Coulomb Wave Functions |
| title |
Complementary Romanovski–Routh Polynomials, Orthogonal Polynomials on the Unit Circle, and Extended Coulomb Wave Functions |
| spellingShingle |
Complementary Romanovski–Routh Polynomials, Orthogonal Polynomials on the Unit Circle, and Extended Coulomb Wave Functions Martínez-Finkelshtein, A. orthogonal polynomials on the unit circle para-orthogonal polynomials Romanovski–Routh polynomials second order differential equations |
| title_short |
Complementary Romanovski–Routh Polynomials, Orthogonal Polynomials on the Unit Circle, and Extended Coulomb Wave Functions |
| title_full |
Complementary Romanovski–Routh Polynomials, Orthogonal Polynomials on the Unit Circle, and Extended Coulomb Wave Functions |
| title_fullStr |
Complementary Romanovski–Routh Polynomials, Orthogonal Polynomials on the Unit Circle, and Extended Coulomb Wave Functions |
| title_full_unstemmed |
Complementary Romanovski–Routh Polynomials, Orthogonal Polynomials on the Unit Circle, and Extended Coulomb Wave Functions |
| title_sort |
Complementary Romanovski–Routh Polynomials, Orthogonal Polynomials on the Unit Circle, and Extended Coulomb Wave Functions |
| author |
Martínez-Finkelshtein, A. |
| author_facet |
Martínez-Finkelshtein, A. Silva Ribeiro, L. L. [UNESP] Sri Ranga, A. [UNESP] Tyaglov, M. |
| author_role |
author |
| author2 |
Silva Ribeiro, L. L. [UNESP] Sri Ranga, A. [UNESP] Tyaglov, M. |
| author2_role |
author author author |
| dc.contributor.none.fl_str_mv |
Baylor University Universidade Estadual Paulista (Unesp) Shanghai Jiao Tong University |
| dc.contributor.author.fl_str_mv |
Martínez-Finkelshtein, A. Silva Ribeiro, L. L. [UNESP] Sri Ranga, A. [UNESP] Tyaglov, M. |
| dc.subject.por.fl_str_mv |
orthogonal polynomials on the unit circle para-orthogonal polynomials Romanovski–Routh polynomials second order differential equations |
| topic |
orthogonal polynomials on the unit circle para-orthogonal polynomials Romanovski–Routh polynomials second order differential equations |
| description |
In a recent paper (Martínez-Finkelshtein et al. in Proc Am Math Soc 147:2625–2640, 2019) some interesting results were obtained concerning complementary Romanovski–Routh polynomials, a class of orthogonal polynomials on the unit circle and extended regular Coulomb wave functions. The class of orthogonal polynomials here are generalization of the class of circular Jacobi polynomials. In the present paper, in addition to looking at some further properties of the complementary Romanovski–Routh polynomials and associated orthogonal polynomials on the unit circle, behaviour of the zeros of these extended Coulomb wave functions are also studied. |
| publishDate |
2020 |
| dc.date.none.fl_str_mv |
2020-12-12T01:57:19Z 2020-12-12T01:57:19Z 2020-03-01 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/s00025-020-1167-8 Results in Mathematics, v. 75, n. 1, 2020. 1420-9012 1422-6383 http://hdl.handle.net/11449/200085 10.1007/s00025-020-1167-8 2-s2.0-85079722002 |
| url |
http://dx.doi.org/10.1007/s00025-020-1167-8 http://hdl.handle.net/11449/200085 |
| identifier_str_mv |
Results in Mathematics, v. 75, n. 1, 2020. 1420-9012 1422-6383 10.1007/s00025-020-1167-8 2-s2.0-85079722002 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
Results in Mathematics |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
| instname_str |
Universidade Estadual Paulista (UNESP) |
| instacron_str |
UNESP |
| institution |
UNESP |
| reponame_str |
Repositório Institucional da UNESP |
| collection |
Repositório Institucional da UNESP |
| repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
| repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
| _version_ |
1854948677065375744 |