Complementary Romanovski–Routh Polynomials, Orthogonal Polynomials on the Unit Circle, and Extended Coulomb Wave Functions

Bibliographic Details
Main Author: Martínez-Finkelshtein, A.
Publication Date: 2020
Other Authors: Silva Ribeiro, L. L. [UNESP], Sri Ranga, A. [UNESP], Tyaglov, M.
Format: Article
Language: eng
Source: Repositório Institucional da UNESP
Download full: http://dx.doi.org/10.1007/s00025-020-1167-8
http://hdl.handle.net/11449/200085
Summary: In a recent paper (Martínez-Finkelshtein et al. in Proc Am Math Soc 147:2625–2640, 2019) some interesting results were obtained concerning complementary Romanovski–Routh polynomials, a class of orthogonal polynomials on the unit circle and extended regular Coulomb wave functions. The class of orthogonal polynomials here are generalization of the class of circular Jacobi polynomials. In the present paper, in addition to looking at some further properties of the complementary Romanovski–Routh polynomials and associated orthogonal polynomials on the unit circle, behaviour of the zeros of these extended Coulomb wave functions are also studied.
id UNSP_f8fb94ec095cae684691f2e7fe152ecd
oai_identifier_str oai:repositorio.unesp.br:11449/200085
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Complementary Romanovski–Routh Polynomials, Orthogonal Polynomials on the Unit Circle, and Extended Coulomb Wave Functionsorthogonal polynomials on the unit circlepara-orthogonal polynomialsRomanovski–Routh polynomialssecond order differential equationsIn a recent paper (Martínez-Finkelshtein et al. in Proc Am Math Soc 147:2625–2640, 2019) some interesting results were obtained concerning complementary Romanovski–Routh polynomials, a class of orthogonal polynomials on the unit circle and extended regular Coulomb wave functions. The class of orthogonal polynomials here are generalization of the class of circular Jacobi polynomials. In the present paper, in addition to looking at some further properties of the complementary Romanovski–Routh polynomials and associated orthogonal polynomials on the unit circle, behaviour of the zeros of these extended Coulomb wave functions are also studied.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Junta de AndalucíaEuropean Regional Development FundDepartament of Mathematics Baylor UniversityDepartamento de Matemática Aplicada IBILCE UNESP-Universidade Estadual Paulista, São José do Rio PretoSchool of Mathematical Sciences Shanghai Jiao Tong UniversityDepartamento de Matemática Aplicada IBILCE UNESP-Universidade Estadual Paulista, São José do Rio PretoFAPESP: 2016/09906-0FAPESP: 2017/04358-8CNPq: 304087/2018-1Junta de Andalucía: FQM-229European Regional Development Fund: MTM2017-89941-PBaylor UniversityUniversidade Estadual Paulista (Unesp)Shanghai Jiao Tong UniversityMartínez-Finkelshtein, A.Silva Ribeiro, L. L. [UNESP]Sri Ranga, A. [UNESP]Tyaglov, M.2020-12-12T01:57:19Z2020-12-12T01:57:19Z2020-03-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1007/s00025-020-1167-8Results in Mathematics, v. 75, n. 1, 2020.1420-90121422-6383http://hdl.handle.net/11449/20008510.1007/s00025-020-1167-82-s2.0-85079722002Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengResults in Mathematicsinfo:eu-repo/semantics/openAccess2024-11-01T14:44:02Zoai:repositorio.unesp.br:11449/200085Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-11-01T14:44:02Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Complementary Romanovski–Routh Polynomials, Orthogonal Polynomials on the Unit Circle, and Extended Coulomb Wave Functions
title Complementary Romanovski–Routh Polynomials, Orthogonal Polynomials on the Unit Circle, and Extended Coulomb Wave Functions
spellingShingle Complementary Romanovski–Routh Polynomials, Orthogonal Polynomials on the Unit Circle, and Extended Coulomb Wave Functions
Martínez-Finkelshtein, A.
orthogonal polynomials on the unit circle
para-orthogonal polynomials
Romanovski–Routh polynomials
second order differential equations
title_short Complementary Romanovski–Routh Polynomials, Orthogonal Polynomials on the Unit Circle, and Extended Coulomb Wave Functions
title_full Complementary Romanovski–Routh Polynomials, Orthogonal Polynomials on the Unit Circle, and Extended Coulomb Wave Functions
title_fullStr Complementary Romanovski–Routh Polynomials, Orthogonal Polynomials on the Unit Circle, and Extended Coulomb Wave Functions
title_full_unstemmed Complementary Romanovski–Routh Polynomials, Orthogonal Polynomials on the Unit Circle, and Extended Coulomb Wave Functions
title_sort Complementary Romanovski–Routh Polynomials, Orthogonal Polynomials on the Unit Circle, and Extended Coulomb Wave Functions
author Martínez-Finkelshtein, A.
author_facet Martínez-Finkelshtein, A.
Silva Ribeiro, L. L. [UNESP]
Sri Ranga, A. [UNESP]
Tyaglov, M.
author_role author
author2 Silva Ribeiro, L. L. [UNESP]
Sri Ranga, A. [UNESP]
Tyaglov, M.
author2_role author
author
author
dc.contributor.none.fl_str_mv Baylor University
Universidade Estadual Paulista (Unesp)
Shanghai Jiao Tong University
dc.contributor.author.fl_str_mv Martínez-Finkelshtein, A.
Silva Ribeiro, L. L. [UNESP]
Sri Ranga, A. [UNESP]
Tyaglov, M.
dc.subject.por.fl_str_mv orthogonal polynomials on the unit circle
para-orthogonal polynomials
Romanovski–Routh polynomials
second order differential equations
topic orthogonal polynomials on the unit circle
para-orthogonal polynomials
Romanovski–Routh polynomials
second order differential equations
description In a recent paper (Martínez-Finkelshtein et al. in Proc Am Math Soc 147:2625–2640, 2019) some interesting results were obtained concerning complementary Romanovski–Routh polynomials, a class of orthogonal polynomials on the unit circle and extended regular Coulomb wave functions. The class of orthogonal polynomials here are generalization of the class of circular Jacobi polynomials. In the present paper, in addition to looking at some further properties of the complementary Romanovski–Routh polynomials and associated orthogonal polynomials on the unit circle, behaviour of the zeros of these extended Coulomb wave functions are also studied.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-12T01:57:19Z
2020-12-12T01:57:19Z
2020-03-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/s00025-020-1167-8
Results in Mathematics, v. 75, n. 1, 2020.
1420-9012
1422-6383
http://hdl.handle.net/11449/200085
10.1007/s00025-020-1167-8
2-s2.0-85079722002
url http://dx.doi.org/10.1007/s00025-020-1167-8
http://hdl.handle.net/11449/200085
identifier_str_mv Results in Mathematics, v. 75, n. 1, 2020.
1420-9012
1422-6383
10.1007/s00025-020-1167-8
2-s2.0-85079722002
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Results in Mathematics
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1854948677065375744