Orthogonal polynomials and Mobius transformations

Bibliographic Details
Main Author: Vieira, R. S.
Publication Date: 2021
Other Authors: Botta, V [UNESP]
Format: Article
Language: eng
Source: Repositório Institucional da UNESP
Download full: http://dx.doi.org/10.1007/s40314-021-01516-4
http://hdl.handle.net/11449/218621
Summary: Given an orthogonal polynomial sequence on the real line, another sequence of polynomials can be found by composing them with a Mobius transformation. In this work, we study the properties of such Mobius-transformed polynomials in a systematically way. We show that these polynomials are orthogonal on a given curve of the complex plane with respect to a particular kind of varying measure, and that they enjoy several properties common to the orthogonal polynomials on the real line. Moreover, many properties of the orthogonal polynomials can be easier derived from this approach, for example, we can show that the Hermite, Laguerre, Jacobi, Bessel and Romanovski polynomials are all related with each other by suitable Mobius transformations; also, the orthogonality relations for Bessel and Romanovski polynomials on the complex plane easily follows.
id UNSP_3e33cf1fbabeb50ebc42a670bd66430d
oai_identifier_str oai:repositorio.unesp.br:11449/218621
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Orthogonal polynomials and Mobius transformationsOrthogonal polynomialsMobius transformationsVarying weight functionsClassical orthogonal polynomialsBessel polynomialsRomanovski polynomialsGiven an orthogonal polynomial sequence on the real line, another sequence of polynomials can be found by composing them with a Mobius transformation. In this work, we study the properties of such Mobius-transformed polynomials in a systematically way. We show that these polynomials are orthogonal on a given curve of the complex plane with respect to a particular kind of varying measure, and that they enjoy several properties common to the orthogonal polynomials on the real line. Moreover, many properties of the orthogonal polynomials can be easier derived from this approach, for example, we can show that the Hermite, Laguerre, Jacobi, Bessel and Romanovski polynomials are all related with each other by suitable Mobius transformations; also, the orthogonality relations for Bessel and Romanovski polynomials on the complex plane easily follows.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Univ Fed Sao Carlos UFSCar, Dept Matemat, BR-13565905 Sao Carlos, SP, BrazilUniv Estadual Paulista, Fac Ciencias & Tecnol, Dept Matemat & Comp, UNESP, BR-19060900 Presidente Prudente, SP, BrazilUniv Estadual Paulista, Fac Ciencias & Tecnol, Dept Matemat & Comp, UNESP, BR-19060900 Presidente Prudente, SP, BrazilCAPES: 001FAPESP: 2016/02700-8SpringerUniversidade Federal de São Carlos (UFSCar)Universidade Estadual Paulista (UNESP)Vieira, R. S.Botta, V [UNESP]2022-04-28T17:22:01Z2022-04-28T17:22:01Z2021-09-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article27http://dx.doi.org/10.1007/s40314-021-01516-4Computational & Applied Mathematics. Heidelberg: Springer Heidelberg, v. 40, n. 6, 27 p., 2021.2238-3603http://hdl.handle.net/11449/21862110.1007/s40314-021-01516-4WOS:000669311200001Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengComputational & Applied Mathematicsinfo:eu-repo/semantics/openAccess2024-06-19T14:32:05Zoai:repositorio.unesp.br:11449/218621Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-06-19T14:32:05Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Orthogonal polynomials and Mobius transformations
title Orthogonal polynomials and Mobius transformations
spellingShingle Orthogonal polynomials and Mobius transformations
Vieira, R. S.
Orthogonal polynomials
Mobius transformations
Varying weight functions
Classical orthogonal polynomials
Bessel polynomials
Romanovski polynomials
title_short Orthogonal polynomials and Mobius transformations
title_full Orthogonal polynomials and Mobius transformations
title_fullStr Orthogonal polynomials and Mobius transformations
title_full_unstemmed Orthogonal polynomials and Mobius transformations
title_sort Orthogonal polynomials and Mobius transformations
author Vieira, R. S.
author_facet Vieira, R. S.
Botta, V [UNESP]
author_role author
author2 Botta, V [UNESP]
author2_role author
dc.contributor.none.fl_str_mv Universidade Federal de São Carlos (UFSCar)
Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Vieira, R. S.
Botta, V [UNESP]
dc.subject.por.fl_str_mv Orthogonal polynomials
Mobius transformations
Varying weight functions
Classical orthogonal polynomials
Bessel polynomials
Romanovski polynomials
topic Orthogonal polynomials
Mobius transformations
Varying weight functions
Classical orthogonal polynomials
Bessel polynomials
Romanovski polynomials
description Given an orthogonal polynomial sequence on the real line, another sequence of polynomials can be found by composing them with a Mobius transformation. In this work, we study the properties of such Mobius-transformed polynomials in a systematically way. We show that these polynomials are orthogonal on a given curve of the complex plane with respect to a particular kind of varying measure, and that they enjoy several properties common to the orthogonal polynomials on the real line. Moreover, many properties of the orthogonal polynomials can be easier derived from this approach, for example, we can show that the Hermite, Laguerre, Jacobi, Bessel and Romanovski polynomials are all related with each other by suitable Mobius transformations; also, the orthogonality relations for Bessel and Romanovski polynomials on the complex plane easily follows.
publishDate 2021
dc.date.none.fl_str_mv 2021-09-01
2022-04-28T17:22:01Z
2022-04-28T17:22:01Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/s40314-021-01516-4
Computational & Applied Mathematics. Heidelberg: Springer Heidelberg, v. 40, n. 6, 27 p., 2021.
2238-3603
http://hdl.handle.net/11449/218621
10.1007/s40314-021-01516-4
WOS:000669311200001
url http://dx.doi.org/10.1007/s40314-021-01516-4
http://hdl.handle.net/11449/218621
identifier_str_mv Computational & Applied Mathematics. Heidelberg: Springer Heidelberg, v. 40, n. 6, 27 p., 2021.
2238-3603
10.1007/s40314-021-01516-4
WOS:000669311200001
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Computational & Applied Mathematics
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 27
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1854948703738003456