Orthogonal polynomials and Mobius transformations
| Main Author: | |
|---|---|
| Publication Date: | 2021 |
| Other Authors: | |
| Format: | Article |
| Language: | eng |
| Source: | Repositório Institucional da UNESP |
| Download full: | http://dx.doi.org/10.1007/s40314-021-01516-4 http://hdl.handle.net/11449/218621 |
Summary: | Given an orthogonal polynomial sequence on the real line, another sequence of polynomials can be found by composing them with a Mobius transformation. In this work, we study the properties of such Mobius-transformed polynomials in a systematically way. We show that these polynomials are orthogonal on a given curve of the complex plane with respect to a particular kind of varying measure, and that they enjoy several properties common to the orthogonal polynomials on the real line. Moreover, many properties of the orthogonal polynomials can be easier derived from this approach, for example, we can show that the Hermite, Laguerre, Jacobi, Bessel and Romanovski polynomials are all related with each other by suitable Mobius transformations; also, the orthogonality relations for Bessel and Romanovski polynomials on the complex plane easily follows. |
| id |
UNSP_3e33cf1fbabeb50ebc42a670bd66430d |
|---|---|
| oai_identifier_str |
oai:repositorio.unesp.br:11449/218621 |
| network_acronym_str |
UNSP |
| network_name_str |
Repositório Institucional da UNESP |
| repository_id_str |
2946 |
| spelling |
Orthogonal polynomials and Mobius transformationsOrthogonal polynomialsMobius transformationsVarying weight functionsClassical orthogonal polynomialsBessel polynomialsRomanovski polynomialsGiven an orthogonal polynomial sequence on the real line, another sequence of polynomials can be found by composing them with a Mobius transformation. In this work, we study the properties of such Mobius-transformed polynomials in a systematically way. We show that these polynomials are orthogonal on a given curve of the complex plane with respect to a particular kind of varying measure, and that they enjoy several properties common to the orthogonal polynomials on the real line. Moreover, many properties of the orthogonal polynomials can be easier derived from this approach, for example, we can show that the Hermite, Laguerre, Jacobi, Bessel and Romanovski polynomials are all related with each other by suitable Mobius transformations; also, the orthogonality relations for Bessel and Romanovski polynomials on the complex plane easily follows.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Univ Fed Sao Carlos UFSCar, Dept Matemat, BR-13565905 Sao Carlos, SP, BrazilUniv Estadual Paulista, Fac Ciencias & Tecnol, Dept Matemat & Comp, UNESP, BR-19060900 Presidente Prudente, SP, BrazilUniv Estadual Paulista, Fac Ciencias & Tecnol, Dept Matemat & Comp, UNESP, BR-19060900 Presidente Prudente, SP, BrazilCAPES: 001FAPESP: 2016/02700-8SpringerUniversidade Federal de São Carlos (UFSCar)Universidade Estadual Paulista (UNESP)Vieira, R. S.Botta, V [UNESP]2022-04-28T17:22:01Z2022-04-28T17:22:01Z2021-09-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article27http://dx.doi.org/10.1007/s40314-021-01516-4Computational & Applied Mathematics. Heidelberg: Springer Heidelberg, v. 40, n. 6, 27 p., 2021.2238-3603http://hdl.handle.net/11449/21862110.1007/s40314-021-01516-4WOS:000669311200001Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengComputational & Applied Mathematicsinfo:eu-repo/semantics/openAccess2024-06-19T14:32:05Zoai:repositorio.unesp.br:11449/218621Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-06-19T14:32:05Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
| dc.title.none.fl_str_mv |
Orthogonal polynomials and Mobius transformations |
| title |
Orthogonal polynomials and Mobius transformations |
| spellingShingle |
Orthogonal polynomials and Mobius transformations Vieira, R. S. Orthogonal polynomials Mobius transformations Varying weight functions Classical orthogonal polynomials Bessel polynomials Romanovski polynomials |
| title_short |
Orthogonal polynomials and Mobius transformations |
| title_full |
Orthogonal polynomials and Mobius transformations |
| title_fullStr |
Orthogonal polynomials and Mobius transformations |
| title_full_unstemmed |
Orthogonal polynomials and Mobius transformations |
| title_sort |
Orthogonal polynomials and Mobius transformations |
| author |
Vieira, R. S. |
| author_facet |
Vieira, R. S. Botta, V [UNESP] |
| author_role |
author |
| author2 |
Botta, V [UNESP] |
| author2_role |
author |
| dc.contributor.none.fl_str_mv |
Universidade Federal de São Carlos (UFSCar) Universidade Estadual Paulista (UNESP) |
| dc.contributor.author.fl_str_mv |
Vieira, R. S. Botta, V [UNESP] |
| dc.subject.por.fl_str_mv |
Orthogonal polynomials Mobius transformations Varying weight functions Classical orthogonal polynomials Bessel polynomials Romanovski polynomials |
| topic |
Orthogonal polynomials Mobius transformations Varying weight functions Classical orthogonal polynomials Bessel polynomials Romanovski polynomials |
| description |
Given an orthogonal polynomial sequence on the real line, another sequence of polynomials can be found by composing them with a Mobius transformation. In this work, we study the properties of such Mobius-transformed polynomials in a systematically way. We show that these polynomials are orthogonal on a given curve of the complex plane with respect to a particular kind of varying measure, and that they enjoy several properties common to the orthogonal polynomials on the real line. Moreover, many properties of the orthogonal polynomials can be easier derived from this approach, for example, we can show that the Hermite, Laguerre, Jacobi, Bessel and Romanovski polynomials are all related with each other by suitable Mobius transformations; also, the orthogonality relations for Bessel and Romanovski polynomials on the complex plane easily follows. |
| publishDate |
2021 |
| dc.date.none.fl_str_mv |
2021-09-01 2022-04-28T17:22:01Z 2022-04-28T17:22:01Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/s40314-021-01516-4 Computational & Applied Mathematics. Heidelberg: Springer Heidelberg, v. 40, n. 6, 27 p., 2021. 2238-3603 http://hdl.handle.net/11449/218621 10.1007/s40314-021-01516-4 WOS:000669311200001 |
| url |
http://dx.doi.org/10.1007/s40314-021-01516-4 http://hdl.handle.net/11449/218621 |
| identifier_str_mv |
Computational & Applied Mathematics. Heidelberg: Springer Heidelberg, v. 40, n. 6, 27 p., 2021. 2238-3603 10.1007/s40314-021-01516-4 WOS:000669311200001 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
Computational & Applied Mathematics |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
27 |
| dc.publisher.none.fl_str_mv |
Springer |
| publisher.none.fl_str_mv |
Springer |
| dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
| instname_str |
Universidade Estadual Paulista (UNESP) |
| instacron_str |
UNESP |
| institution |
UNESP |
| reponame_str |
Repositório Institucional da UNESP |
| collection |
Repositório Institucional da UNESP |
| repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
| repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
| _version_ |
1854948703738003456 |