Bifurcations at infinity, invariant algebraic surfaces, homoclinic and heteroclinic orbits and centers of a new Lorenz-like chaotic system
Main Author: | |
---|---|
Publication Date: | 2016 |
Other Authors: | , |
Format: | Article |
Language: | eng |
Source: | Repositório Institucional da UNESP |
Download full: | http://dx.doi.org/10.1007/s11071-015-2520-4 http://hdl.handle.net/11449/172702 |
Summary: | We present a global dynamical analysis of the following quadratic differential system (Formula presented.) , where (Formula presented.) are the state variables and a, b, d, f, g are real parameters. This system has been proposed as a new type of chaotic system, having additional complex dynamical properties to the well-known chaotic systems defined in (Formula presented.) , alike Lorenz, Rössler, Chen and other. By using the Poincaré compactification for a polynomial vector field in (Formula presented.) , we study the dynamics of this system on the Poincaré ball, showing that it undergoes interesting types of bifurcations at infinity. We also investigate the existence of first integrals and study the dynamical behavior of the system on the invariant algebraic surfaces defined by these first integrals, showing the existence of families of homoclinic and heteroclinic orbits and centers contained on these invariant surfaces. |
id |
UNSP_d28f9aba3dc92ba5efd4472e8d77751d |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/172702 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Bifurcations at infinity, invariant algebraic surfaces, homoclinic and heteroclinic orbits and centers of a new Lorenz-like chaotic systemCenters on R3Dynamics at infinityFirst integralHeteroclinic orbitsHomoclinic orbitsInvariant algebraic surfacesPoincaré compactificationQuadratic systemWe present a global dynamical analysis of the following quadratic differential system (Formula presented.) , where (Formula presented.) are the state variables and a, b, d, f, g are real parameters. This system has been proposed as a new type of chaotic system, having additional complex dynamical properties to the well-known chaotic systems defined in (Formula presented.) , alike Lorenz, Rössler, Chen and other. By using the Poincaré compactification for a polynomial vector field in (Formula presented.) , we study the dynamics of this system on the Poincaré ball, showing that it undergoes interesting types of bifurcations at infinity. We also investigate the existence of first integrals and study the dynamical behavior of the system on the invariant algebraic surfaces defined by these first integrals, showing the existence of families of homoclinic and heteroclinic orbits and centers contained on these invariant surfaces.Departamento de Matemática Instituto de Biociências Letras e Ciências Exatas - IBILCE Univ Estadual Paulista (UNESP)Departamento de Matemática e Computação Faculdade de Ciências e Tecnologia - FCT Univ Estadual Paulista (UNESP)Departamento de Matemática Instituto de Biociências Letras e Ciências Exatas - IBILCE Univ Estadual Paulista (UNESP)Departamento de Matemática e Computação Faculdade de Ciências e Tecnologia - FCT Univ Estadual Paulista (UNESP)Universidade Estadual Paulista (Unesp)Gouveia, Márcio R. A. [UNESP]Messias, Marcelo [UNESP]Pessoa, Claudio [UNESP]2018-12-11T17:01:50Z2018-12-11T17:01:50Z2016-04-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article703-713application/pdfhttp://dx.doi.org/10.1007/s11071-015-2520-4Nonlinear Dynamics, v. 84, n. 2, p. 703-713, 2016.1573-269X0924-090Xhttp://hdl.handle.net/11449/17270210.1007/s11071-015-2520-42-s2.0-849611663142-s2.0-84961166314.pdf375722566905631737249378865574240000-0001-6790-1055Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengNonlinear Dynamicsinfo:eu-repo/semantics/openAccess2024-11-01T14:27:11Zoai:repositorio.unesp.br:11449/172702Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-11-01T14:27:11Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Bifurcations at infinity, invariant algebraic surfaces, homoclinic and heteroclinic orbits and centers of a new Lorenz-like chaotic system |
title |
Bifurcations at infinity, invariant algebraic surfaces, homoclinic and heteroclinic orbits and centers of a new Lorenz-like chaotic system |
spellingShingle |
Bifurcations at infinity, invariant algebraic surfaces, homoclinic and heteroclinic orbits and centers of a new Lorenz-like chaotic system Gouveia, Márcio R. A. [UNESP] Centers on R3 Dynamics at infinity First integral Heteroclinic orbits Homoclinic orbits Invariant algebraic surfaces Poincaré compactification Quadratic system |
title_short |
Bifurcations at infinity, invariant algebraic surfaces, homoclinic and heteroclinic orbits and centers of a new Lorenz-like chaotic system |
title_full |
Bifurcations at infinity, invariant algebraic surfaces, homoclinic and heteroclinic orbits and centers of a new Lorenz-like chaotic system |
title_fullStr |
Bifurcations at infinity, invariant algebraic surfaces, homoclinic and heteroclinic orbits and centers of a new Lorenz-like chaotic system |
title_full_unstemmed |
Bifurcations at infinity, invariant algebraic surfaces, homoclinic and heteroclinic orbits and centers of a new Lorenz-like chaotic system |
title_sort |
Bifurcations at infinity, invariant algebraic surfaces, homoclinic and heteroclinic orbits and centers of a new Lorenz-like chaotic system |
author |
Gouveia, Márcio R. A. [UNESP] |
author_facet |
Gouveia, Márcio R. A. [UNESP] Messias, Marcelo [UNESP] Pessoa, Claudio [UNESP] |
author_role |
author |
author2 |
Messias, Marcelo [UNESP] Pessoa, Claudio [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Gouveia, Márcio R. A. [UNESP] Messias, Marcelo [UNESP] Pessoa, Claudio [UNESP] |
dc.subject.por.fl_str_mv |
Centers on R3 Dynamics at infinity First integral Heteroclinic orbits Homoclinic orbits Invariant algebraic surfaces Poincaré compactification Quadratic system |
topic |
Centers on R3 Dynamics at infinity First integral Heteroclinic orbits Homoclinic orbits Invariant algebraic surfaces Poincaré compactification Quadratic system |
description |
We present a global dynamical analysis of the following quadratic differential system (Formula presented.) , where (Formula presented.) are the state variables and a, b, d, f, g are real parameters. This system has been proposed as a new type of chaotic system, having additional complex dynamical properties to the well-known chaotic systems defined in (Formula presented.) , alike Lorenz, Rössler, Chen and other. By using the Poincaré compactification for a polynomial vector field in (Formula presented.) , we study the dynamics of this system on the Poincaré ball, showing that it undergoes interesting types of bifurcations at infinity. We also investigate the existence of first integrals and study the dynamical behavior of the system on the invariant algebraic surfaces defined by these first integrals, showing the existence of families of homoclinic and heteroclinic orbits and centers contained on these invariant surfaces. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-04-01 2018-12-11T17:01:50Z 2018-12-11T17:01:50Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/s11071-015-2520-4 Nonlinear Dynamics, v. 84, n. 2, p. 703-713, 2016. 1573-269X 0924-090X http://hdl.handle.net/11449/172702 10.1007/s11071-015-2520-4 2-s2.0-84961166314 2-s2.0-84961166314.pdf 3757225669056317 3724937886557424 0000-0001-6790-1055 |
url |
http://dx.doi.org/10.1007/s11071-015-2520-4 http://hdl.handle.net/11449/172702 |
identifier_str_mv |
Nonlinear Dynamics, v. 84, n. 2, p. 703-713, 2016. 1573-269X 0924-090X 10.1007/s11071-015-2520-4 2-s2.0-84961166314 2-s2.0-84961166314.pdf 3757225669056317 3724937886557424 0000-0001-6790-1055 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Nonlinear Dynamics |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
703-713 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1834483351775346688 |