Export Ready — 

Bifurcations at infinity, invariant algebraic surfaces, homoclinic and heteroclinic orbits and centers of a new Lorenz-like chaotic system

Bibliographic Details
Main Author: Gouveia, Márcio R. A. [UNESP]
Publication Date: 2016
Other Authors: Messias, Marcelo [UNESP], Pessoa, Claudio [UNESP]
Format: Article
Language: eng
Source: Repositório Institucional da UNESP
Download full: http://dx.doi.org/10.1007/s11071-015-2520-4
http://hdl.handle.net/11449/172702
Summary: We present a global dynamical analysis of the following quadratic differential system (Formula presented.) , where (Formula presented.) are the state variables and a, b, d, f, g are real parameters. This system has been proposed as a new type of chaotic system, having additional complex dynamical properties to the well-known chaotic systems defined in (Formula presented.) , alike Lorenz, Rössler, Chen and other. By using the Poincaré compactification for a polynomial vector field in (Formula presented.) , we study the dynamics of this system on the Poincaré ball, showing that it undergoes interesting types of bifurcations at infinity. We also investigate the existence of first integrals and study the dynamical behavior of the system on the invariant algebraic surfaces defined by these first integrals, showing the existence of families of homoclinic and heteroclinic orbits and centers contained on these invariant surfaces.
id UNSP_d28f9aba3dc92ba5efd4472e8d77751d
oai_identifier_str oai:repositorio.unesp.br:11449/172702
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Bifurcations at infinity, invariant algebraic surfaces, homoclinic and heteroclinic orbits and centers of a new Lorenz-like chaotic systemCenters on R3Dynamics at infinityFirst integralHeteroclinic orbitsHomoclinic orbitsInvariant algebraic surfacesPoincaré compactificationQuadratic systemWe present a global dynamical analysis of the following quadratic differential system (Formula presented.) , where (Formula presented.) are the state variables and a, b, d, f, g are real parameters. This system has been proposed as a new type of chaotic system, having additional complex dynamical properties to the well-known chaotic systems defined in (Formula presented.) , alike Lorenz, Rössler, Chen and other. By using the Poincaré compactification for a polynomial vector field in (Formula presented.) , we study the dynamics of this system on the Poincaré ball, showing that it undergoes interesting types of bifurcations at infinity. We also investigate the existence of first integrals and study the dynamical behavior of the system on the invariant algebraic surfaces defined by these first integrals, showing the existence of families of homoclinic and heteroclinic orbits and centers contained on these invariant surfaces.Departamento de Matemática Instituto de Biociências Letras e Ciências Exatas - IBILCE Univ Estadual Paulista (UNESP)Departamento de Matemática e Computação Faculdade de Ciências e Tecnologia - FCT Univ Estadual Paulista (UNESP)Departamento de Matemática Instituto de Biociências Letras e Ciências Exatas - IBILCE Univ Estadual Paulista (UNESP)Departamento de Matemática e Computação Faculdade de Ciências e Tecnologia - FCT Univ Estadual Paulista (UNESP)Universidade Estadual Paulista (Unesp)Gouveia, Márcio R. A. [UNESP]Messias, Marcelo [UNESP]Pessoa, Claudio [UNESP]2018-12-11T17:01:50Z2018-12-11T17:01:50Z2016-04-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article703-713application/pdfhttp://dx.doi.org/10.1007/s11071-015-2520-4Nonlinear Dynamics, v. 84, n. 2, p. 703-713, 2016.1573-269X0924-090Xhttp://hdl.handle.net/11449/17270210.1007/s11071-015-2520-42-s2.0-849611663142-s2.0-84961166314.pdf375722566905631737249378865574240000-0001-6790-1055Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengNonlinear Dynamicsinfo:eu-repo/semantics/openAccess2024-11-01T14:27:11Zoai:repositorio.unesp.br:11449/172702Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-11-01T14:27:11Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Bifurcations at infinity, invariant algebraic surfaces, homoclinic and heteroclinic orbits and centers of a new Lorenz-like chaotic system
title Bifurcations at infinity, invariant algebraic surfaces, homoclinic and heteroclinic orbits and centers of a new Lorenz-like chaotic system
spellingShingle Bifurcations at infinity, invariant algebraic surfaces, homoclinic and heteroclinic orbits and centers of a new Lorenz-like chaotic system
Gouveia, Márcio R. A. [UNESP]
Centers on R3
Dynamics at infinity
First integral
Heteroclinic orbits
Homoclinic orbits
Invariant algebraic surfaces
Poincaré compactification
Quadratic system
title_short Bifurcations at infinity, invariant algebraic surfaces, homoclinic and heteroclinic orbits and centers of a new Lorenz-like chaotic system
title_full Bifurcations at infinity, invariant algebraic surfaces, homoclinic and heteroclinic orbits and centers of a new Lorenz-like chaotic system
title_fullStr Bifurcations at infinity, invariant algebraic surfaces, homoclinic and heteroclinic orbits and centers of a new Lorenz-like chaotic system
title_full_unstemmed Bifurcations at infinity, invariant algebraic surfaces, homoclinic and heteroclinic orbits and centers of a new Lorenz-like chaotic system
title_sort Bifurcations at infinity, invariant algebraic surfaces, homoclinic and heteroclinic orbits and centers of a new Lorenz-like chaotic system
author Gouveia, Márcio R. A. [UNESP]
author_facet Gouveia, Márcio R. A. [UNESP]
Messias, Marcelo [UNESP]
Pessoa, Claudio [UNESP]
author_role author
author2 Messias, Marcelo [UNESP]
Pessoa, Claudio [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Gouveia, Márcio R. A. [UNESP]
Messias, Marcelo [UNESP]
Pessoa, Claudio [UNESP]
dc.subject.por.fl_str_mv Centers on R3
Dynamics at infinity
First integral
Heteroclinic orbits
Homoclinic orbits
Invariant algebraic surfaces
Poincaré compactification
Quadratic system
topic Centers on R3
Dynamics at infinity
First integral
Heteroclinic orbits
Homoclinic orbits
Invariant algebraic surfaces
Poincaré compactification
Quadratic system
description We present a global dynamical analysis of the following quadratic differential system (Formula presented.) , where (Formula presented.) are the state variables and a, b, d, f, g are real parameters. This system has been proposed as a new type of chaotic system, having additional complex dynamical properties to the well-known chaotic systems defined in (Formula presented.) , alike Lorenz, Rössler, Chen and other. By using the Poincaré compactification for a polynomial vector field in (Formula presented.) , we study the dynamics of this system on the Poincaré ball, showing that it undergoes interesting types of bifurcations at infinity. We also investigate the existence of first integrals and study the dynamical behavior of the system on the invariant algebraic surfaces defined by these first integrals, showing the existence of families of homoclinic and heteroclinic orbits and centers contained on these invariant surfaces.
publishDate 2016
dc.date.none.fl_str_mv 2016-04-01
2018-12-11T17:01:50Z
2018-12-11T17:01:50Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/s11071-015-2520-4
Nonlinear Dynamics, v. 84, n. 2, p. 703-713, 2016.
1573-269X
0924-090X
http://hdl.handle.net/11449/172702
10.1007/s11071-015-2520-4
2-s2.0-84961166314
2-s2.0-84961166314.pdf
3757225669056317
3724937886557424
0000-0001-6790-1055
url http://dx.doi.org/10.1007/s11071-015-2520-4
http://hdl.handle.net/11449/172702
identifier_str_mv Nonlinear Dynamics, v. 84, n. 2, p. 703-713, 2016.
1573-269X
0924-090X
10.1007/s11071-015-2520-4
2-s2.0-84961166314
2-s2.0-84961166314.pdf
3757225669056317
3724937886557424
0000-0001-6790-1055
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Nonlinear Dynamics
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 703-713
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1834483351775346688