Classification of H&E Images via CNN Models with XAI Approaches, DeepDream Representations and Multiple Classifiers
Main Author: | |
---|---|
Publication Date: | 2023 |
Other Authors: | , , , , , , , , , |
Format: | Conference object |
Language: | eng |
Source: | Repositório Institucional da UNESP |
Download full: | http://dx.doi.org/10.5220/0011839400003467 http://hdl.handle.net/11449/248918 |
Summary: | The study of diseases via histological images with machine learning techniques has provided important advances for diagnostic support systems. In this project, a study was developed to classify patterns in histological images, based on the association of convolutional neural networks, explainable artificial intelligence techniques, DeepDream representations and multiple classifiers. The images under investigation were representatives of breast cancer, colorectal cancer, liver tissue, and oral dysplasia. The most relevant features were associated by applying the Relief algorithm. The classifiers used were Rotation Forest, Multilayer Perceptron, Logistic, Random Forest, Decorate, IBk, K*, and SVM. The main results were areas under the ROC curve ranging from 0.994 to 1, achieved with a maximum of 100 features. The collected information allows for expanding the use of consolidated techniques in the area of classification and pattern recognition, in addition to supporting future applications in computer-aided diagnosis. |
id |
UNSP_c8ae4e1349ecc297e3cbb5d55c7588a0 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/248918 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Classification of H&E Images via CNN Models with XAI Approaches, DeepDream Representations and Multiple ClassifiersClassificationDeepDream RepresentationsGrad-CAMHistological ImagesLIMEThe study of diseases via histological images with machine learning techniques has provided important advances for diagnostic support systems. In this project, a study was developed to classify patterns in histological images, based on the association of convolutional neural networks, explainable artificial intelligence techniques, DeepDream representations and multiple classifiers. The images under investigation were representatives of breast cancer, colorectal cancer, liver tissue, and oral dysplasia. The most relevant features were associated by applying the Relief algorithm. The classifiers used were Rotation Forest, Multilayer Perceptron, Logistic, Random Forest, Decorate, IBk, K*, and SVM. The main results were areas under the ROC curve ranging from 0.994 to 1, achieved with a maximum of 100 features. The collected information allows for expanding the use of consolidated techniques in the area of classification and pattern recognition, in addition to supporting future applications in computer-aided diagnosis.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)Department of Computer Science and Statistics (DCCE) São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, SPInstitute of Mathematics and Computer Science (ICMC) University of São Paulo (USP), Av. Trabalhador São-carlense, 400, SPScience and Technology Institute Federal University of São Paulo (UNIFESP), Avenida Cesare Mansueto Giulio Lattes, 1201, São PauloDepartment of Histology and Morphology Institute of Biomedical Science Federal University of Uberlândia (UFU), Av. Amazonas, S/N, MGArea of Oral Pathology School of Dentistry Federal University of Uberlândia (UFU), R. Ceará - Umuarama, MGFaculty of Computer Science (FACOM) Federal University of Uberlândia (UFU), Avenida João Naves de Ávila 2121, Bl.B, MGDepartment of Computer Science and Statistics (DCCE) São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, SPCNPq: #153904/2021-6FAPESP: #2022/03020-1CNPq: #311404/2021-9CNPq: #313643/2021-0FAPEMIG: #APQ-00578-18Universidade Estadual Paulista (UNESP)Universidade de São Paulo (USP)Universidade Federal de Uberlândia (UFU)Neves, Leandro Alves [UNESP]Martinez, João Manuel Cardoso [UNESP]da Costa Longo, Leonardo H. [UNESP]Roberto, Guilherme FreireTosta, Thaína Aparecida Azevedode Faria, Paulo RogérioLoyola, Adriano MotaCardoso, Sérgio VitorinoSilva, Adriano Barbosado Nascimento, Marcelo ZanchettaRozendo, Guilherme Botazzo [UNESP]2023-07-29T13:57:17Z2023-07-29T13:57:17Z2023-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject354-364http://dx.doi.org/10.5220/0011839400003467International Conference on Enterprise Information Systems, ICEIS - Proceedings, v. 1, p. 354-364.2184-4992http://hdl.handle.net/11449/24891810.5220/00118394000034672-s2.0-85160750141Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInternational Conference on Enterprise Information Systems, ICEIS - Proceedingsinfo:eu-repo/semantics/openAccess2024-10-25T14:48:26Zoai:repositorio.unesp.br:11449/248918Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-10-25T14:48:26Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Classification of H&E Images via CNN Models with XAI Approaches, DeepDream Representations and Multiple Classifiers |
title |
Classification of H&E Images via CNN Models with XAI Approaches, DeepDream Representations and Multiple Classifiers |
spellingShingle |
Classification of H&E Images via CNN Models with XAI Approaches, DeepDream Representations and Multiple Classifiers Neves, Leandro Alves [UNESP] Classification DeepDream Representations Grad-CAM Histological Images LIME |
title_short |
Classification of H&E Images via CNN Models with XAI Approaches, DeepDream Representations and Multiple Classifiers |
title_full |
Classification of H&E Images via CNN Models with XAI Approaches, DeepDream Representations and Multiple Classifiers |
title_fullStr |
Classification of H&E Images via CNN Models with XAI Approaches, DeepDream Representations and Multiple Classifiers |
title_full_unstemmed |
Classification of H&E Images via CNN Models with XAI Approaches, DeepDream Representations and Multiple Classifiers |
title_sort |
Classification of H&E Images via CNN Models with XAI Approaches, DeepDream Representations and Multiple Classifiers |
author |
Neves, Leandro Alves [UNESP] |
author_facet |
Neves, Leandro Alves [UNESP] Martinez, João Manuel Cardoso [UNESP] da Costa Longo, Leonardo H. [UNESP] Roberto, Guilherme Freire Tosta, Thaína Aparecida Azevedo de Faria, Paulo Rogério Loyola, Adriano Mota Cardoso, Sérgio Vitorino Silva, Adriano Barbosa do Nascimento, Marcelo Zanchetta Rozendo, Guilherme Botazzo [UNESP] |
author_role |
author |
author2 |
Martinez, João Manuel Cardoso [UNESP] da Costa Longo, Leonardo H. [UNESP] Roberto, Guilherme Freire Tosta, Thaína Aparecida Azevedo de Faria, Paulo Rogério Loyola, Adriano Mota Cardoso, Sérgio Vitorino Silva, Adriano Barbosa do Nascimento, Marcelo Zanchetta Rozendo, Guilherme Botazzo [UNESP] |
author2_role |
author author author author author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) Universidade de São Paulo (USP) Universidade Federal de Uberlândia (UFU) |
dc.contributor.author.fl_str_mv |
Neves, Leandro Alves [UNESP] Martinez, João Manuel Cardoso [UNESP] da Costa Longo, Leonardo H. [UNESP] Roberto, Guilherme Freire Tosta, Thaína Aparecida Azevedo de Faria, Paulo Rogério Loyola, Adriano Mota Cardoso, Sérgio Vitorino Silva, Adriano Barbosa do Nascimento, Marcelo Zanchetta Rozendo, Guilherme Botazzo [UNESP] |
dc.subject.por.fl_str_mv |
Classification DeepDream Representations Grad-CAM Histological Images LIME |
topic |
Classification DeepDream Representations Grad-CAM Histological Images LIME |
description |
The study of diseases via histological images with machine learning techniques has provided important advances for diagnostic support systems. In this project, a study was developed to classify patterns in histological images, based on the association of convolutional neural networks, explainable artificial intelligence techniques, DeepDream representations and multiple classifiers. The images under investigation were representatives of breast cancer, colorectal cancer, liver tissue, and oral dysplasia. The most relevant features were associated by applying the Relief algorithm. The classifiers used were Rotation Forest, Multilayer Perceptron, Logistic, Random Forest, Decorate, IBk, K*, and SVM. The main results were areas under the ROC curve ranging from 0.994 to 1, achieved with a maximum of 100 features. The collected information allows for expanding the use of consolidated techniques in the area of classification and pattern recognition, in addition to supporting future applications in computer-aided diagnosis. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-07-29T13:57:17Z 2023-07-29T13:57:17Z 2023-01-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.5220/0011839400003467 International Conference on Enterprise Information Systems, ICEIS - Proceedings, v. 1, p. 354-364. 2184-4992 http://hdl.handle.net/11449/248918 10.5220/0011839400003467 2-s2.0-85160750141 |
url |
http://dx.doi.org/10.5220/0011839400003467 http://hdl.handle.net/11449/248918 |
identifier_str_mv |
International Conference on Enterprise Information Systems, ICEIS - Proceedings, v. 1, p. 354-364. 2184-4992 10.5220/0011839400003467 2-s2.0-85160750141 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
International Conference on Enterprise Information Systems, ICEIS - Proceedings |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
354-364 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1834484732061024256 |