Classification of H&E Images via CNN Models with XAI Approaches, DeepDream Representations and Multiple Classifiers

Bibliographic Details
Main Author: Neves, Leandro Alves [UNESP]
Publication Date: 2023
Other Authors: Martinez, João Manuel Cardoso [UNESP], da Costa Longo, Leonardo H. [UNESP], Roberto, Guilherme Freire, Tosta, Thaína Aparecida Azevedo, de Faria, Paulo Rogério, Loyola, Adriano Mota, Cardoso, Sérgio Vitorino, Silva, Adriano Barbosa, do Nascimento, Marcelo Zanchetta, Rozendo, Guilherme Botazzo [UNESP]
Format: Conference object
Language: eng
Source: Repositório Institucional da UNESP
Download full: http://dx.doi.org/10.5220/0011839400003467
http://hdl.handle.net/11449/248918
Summary: The study of diseases via histological images with machine learning techniques has provided important advances for diagnostic support systems. In this project, a study was developed to classify patterns in histological images, based on the association of convolutional neural networks, explainable artificial intelligence techniques, DeepDream representations and multiple classifiers. The images under investigation were representatives of breast cancer, colorectal cancer, liver tissue, and oral dysplasia. The most relevant features were associated by applying the Relief algorithm. The classifiers used were Rotation Forest, Multilayer Perceptron, Logistic, Random Forest, Decorate, IBk, K*, and SVM. The main results were areas under the ROC curve ranging from 0.994 to 1, achieved with a maximum of 100 features. The collected information allows for expanding the use of consolidated techniques in the area of classification and pattern recognition, in addition to supporting future applications in computer-aided diagnosis.
id UNSP_c8ae4e1349ecc297e3cbb5d55c7588a0
oai_identifier_str oai:repositorio.unesp.br:11449/248918
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Classification of H&E Images via CNN Models with XAI Approaches, DeepDream Representations and Multiple ClassifiersClassificationDeepDream RepresentationsGrad-CAMHistological ImagesLIMEThe study of diseases via histological images with machine learning techniques has provided important advances for diagnostic support systems. In this project, a study was developed to classify patterns in histological images, based on the association of convolutional neural networks, explainable artificial intelligence techniques, DeepDream representations and multiple classifiers. The images under investigation were representatives of breast cancer, colorectal cancer, liver tissue, and oral dysplasia. The most relevant features were associated by applying the Relief algorithm. The classifiers used were Rotation Forest, Multilayer Perceptron, Logistic, Random Forest, Decorate, IBk, K*, and SVM. The main results were areas under the ROC curve ranging from 0.994 to 1, achieved with a maximum of 100 features. The collected information allows for expanding the use of consolidated techniques in the area of classification and pattern recognition, in addition to supporting future applications in computer-aided diagnosis.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)Department of Computer Science and Statistics (DCCE) São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, SPInstitute of Mathematics and Computer Science (ICMC) University of São Paulo (USP), Av. Trabalhador São-carlense, 400, SPScience and Technology Institute Federal University of São Paulo (UNIFESP), Avenida Cesare Mansueto Giulio Lattes, 1201, São PauloDepartment of Histology and Morphology Institute of Biomedical Science Federal University of Uberlândia (UFU), Av. Amazonas, S/N, MGArea of Oral Pathology School of Dentistry Federal University of Uberlândia (UFU), R. Ceará - Umuarama, MGFaculty of Computer Science (FACOM) Federal University of Uberlândia (UFU), Avenida João Naves de Ávila 2121, Bl.B, MGDepartment of Computer Science and Statistics (DCCE) São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, SPCNPq: #153904/2021-6FAPESP: #2022/03020-1CNPq: #311404/2021-9CNPq: #313643/2021-0FAPEMIG: #APQ-00578-18Universidade Estadual Paulista (UNESP)Universidade de São Paulo (USP)Universidade Federal de Uberlândia (UFU)Neves, Leandro Alves [UNESP]Martinez, João Manuel Cardoso [UNESP]da Costa Longo, Leonardo H. [UNESP]Roberto, Guilherme FreireTosta, Thaína Aparecida Azevedode Faria, Paulo RogérioLoyola, Adriano MotaCardoso, Sérgio VitorinoSilva, Adriano Barbosado Nascimento, Marcelo ZanchettaRozendo, Guilherme Botazzo [UNESP]2023-07-29T13:57:17Z2023-07-29T13:57:17Z2023-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject354-364http://dx.doi.org/10.5220/0011839400003467International Conference on Enterprise Information Systems, ICEIS - Proceedings, v. 1, p. 354-364.2184-4992http://hdl.handle.net/11449/24891810.5220/00118394000034672-s2.0-85160750141Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInternational Conference on Enterprise Information Systems, ICEIS - Proceedingsinfo:eu-repo/semantics/openAccess2024-10-25T14:48:26Zoai:repositorio.unesp.br:11449/248918Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-10-25T14:48:26Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Classification of H&E Images via CNN Models with XAI Approaches, DeepDream Representations and Multiple Classifiers
title Classification of H&E Images via CNN Models with XAI Approaches, DeepDream Representations and Multiple Classifiers
spellingShingle Classification of H&E Images via CNN Models with XAI Approaches, DeepDream Representations and Multiple Classifiers
Neves, Leandro Alves [UNESP]
Classification
DeepDream Representations
Grad-CAM
Histological Images
LIME
title_short Classification of H&E Images via CNN Models with XAI Approaches, DeepDream Representations and Multiple Classifiers
title_full Classification of H&E Images via CNN Models with XAI Approaches, DeepDream Representations and Multiple Classifiers
title_fullStr Classification of H&E Images via CNN Models with XAI Approaches, DeepDream Representations and Multiple Classifiers
title_full_unstemmed Classification of H&E Images via CNN Models with XAI Approaches, DeepDream Representations and Multiple Classifiers
title_sort Classification of H&E Images via CNN Models with XAI Approaches, DeepDream Representations and Multiple Classifiers
author Neves, Leandro Alves [UNESP]
author_facet Neves, Leandro Alves [UNESP]
Martinez, João Manuel Cardoso [UNESP]
da Costa Longo, Leonardo H. [UNESP]
Roberto, Guilherme Freire
Tosta, Thaína Aparecida Azevedo
de Faria, Paulo Rogério
Loyola, Adriano Mota
Cardoso, Sérgio Vitorino
Silva, Adriano Barbosa
do Nascimento, Marcelo Zanchetta
Rozendo, Guilherme Botazzo [UNESP]
author_role author
author2 Martinez, João Manuel Cardoso [UNESP]
da Costa Longo, Leonardo H. [UNESP]
Roberto, Guilherme Freire
Tosta, Thaína Aparecida Azevedo
de Faria, Paulo Rogério
Loyola, Adriano Mota
Cardoso, Sérgio Vitorino
Silva, Adriano Barbosa
do Nascimento, Marcelo Zanchetta
Rozendo, Guilherme Botazzo [UNESP]
author2_role author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
Universidade de São Paulo (USP)
Universidade Federal de Uberlândia (UFU)
dc.contributor.author.fl_str_mv Neves, Leandro Alves [UNESP]
Martinez, João Manuel Cardoso [UNESP]
da Costa Longo, Leonardo H. [UNESP]
Roberto, Guilherme Freire
Tosta, Thaína Aparecida Azevedo
de Faria, Paulo Rogério
Loyola, Adriano Mota
Cardoso, Sérgio Vitorino
Silva, Adriano Barbosa
do Nascimento, Marcelo Zanchetta
Rozendo, Guilherme Botazzo [UNESP]
dc.subject.por.fl_str_mv Classification
DeepDream Representations
Grad-CAM
Histological Images
LIME
topic Classification
DeepDream Representations
Grad-CAM
Histological Images
LIME
description The study of diseases via histological images with machine learning techniques has provided important advances for diagnostic support systems. In this project, a study was developed to classify patterns in histological images, based on the association of convolutional neural networks, explainable artificial intelligence techniques, DeepDream representations and multiple classifiers. The images under investigation were representatives of breast cancer, colorectal cancer, liver tissue, and oral dysplasia. The most relevant features were associated by applying the Relief algorithm. The classifiers used were Rotation Forest, Multilayer Perceptron, Logistic, Random Forest, Decorate, IBk, K*, and SVM. The main results were areas under the ROC curve ranging from 0.994 to 1, achieved with a maximum of 100 features. The collected information allows for expanding the use of consolidated techniques in the area of classification and pattern recognition, in addition to supporting future applications in computer-aided diagnosis.
publishDate 2023
dc.date.none.fl_str_mv 2023-07-29T13:57:17Z
2023-07-29T13:57:17Z
2023-01-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.5220/0011839400003467
International Conference on Enterprise Information Systems, ICEIS - Proceedings, v. 1, p. 354-364.
2184-4992
http://hdl.handle.net/11449/248918
10.5220/0011839400003467
2-s2.0-85160750141
url http://dx.doi.org/10.5220/0011839400003467
http://hdl.handle.net/11449/248918
identifier_str_mv International Conference on Enterprise Information Systems, ICEIS - Proceedings, v. 1, p. 354-364.
2184-4992
10.5220/0011839400003467
2-s2.0-85160750141
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv International Conference on Enterprise Information Systems, ICEIS - Proceedings
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 354-364
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1834484732061024256