Well-rounded lattices via polynomials with real roots

Detalhes bibliográficos
Autor(a) principal: Alves, Carina [UNESP]
Data de Publicação: 2020
Outros Autores: Pinto, William L.S. [UNESP], Andrade, Antonio A. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.12732/ijam.v33i4.10
http://hdl.handle.net/11449/221552
Resumo: Well-rounded lattices have been a topic of recent studies with applications in wiretap channels and in cryptography. A lattice of full rank in Euclidean space is called well-rounded if its set of minimal vectors spans the whole space. In this paper, we investigate the well-roundedness of lattices coming from polynomials with integer coefficients and real roots.
id UNSP_bcb87c744156e374062fca9a28ab35c0
oai_identifier_str oai:repositorio.unesp.br:11449/221552
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Well-rounded lattices via polynomials with real rootsDense packingMinimum normPolynomialsWell-rounded latticeWell-rounded lattices have been a topic of recent studies with applications in wiretap channels and in cryptography. A lattice of full rank in Euclidean space is called well-rounded if its set of minimal vectors spans the whole space. In this paper, we investigate the well-roundedness of lattices coming from polynomials with integer coefficients and real roots.Department of Mathematics São Paulo State UniversityDepartment of Mathematics São Paulo State UniversityUniversidade Estadual Paulista (UNESP)Alves, Carina [UNESP]Pinto, William L.S. [UNESP]Andrade, Antonio A. [UNESP]2022-04-28T19:29:20Z2022-04-28T19:29:20Z2020-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article663-672http://dx.doi.org/10.12732/ijam.v33i4.10International Journal of Applied Mathematics, v. 33, n. 4, p. 663-672, 2020.1314-80601311-1728http://hdl.handle.net/11449/22155210.12732/ijam.v33i4.102-s2.0-85090829819Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInternational Journal of Applied Mathematicsinfo:eu-repo/semantics/openAccess2022-04-28T19:29:20Zoai:repositorio.unesp.br:11449/221552Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462022-04-28T19:29:20Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Well-rounded lattices via polynomials with real roots
title Well-rounded lattices via polynomials with real roots
spellingShingle Well-rounded lattices via polynomials with real roots
Alves, Carina [UNESP]
Dense packing
Minimum norm
Polynomials
Well-rounded lattice
title_short Well-rounded lattices via polynomials with real roots
title_full Well-rounded lattices via polynomials with real roots
title_fullStr Well-rounded lattices via polynomials with real roots
title_full_unstemmed Well-rounded lattices via polynomials with real roots
title_sort Well-rounded lattices via polynomials with real roots
author Alves, Carina [UNESP]
author_facet Alves, Carina [UNESP]
Pinto, William L.S. [UNESP]
Andrade, Antonio A. [UNESP]
author_role author
author2 Pinto, William L.S. [UNESP]
Andrade, Antonio A. [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Alves, Carina [UNESP]
Pinto, William L.S. [UNESP]
Andrade, Antonio A. [UNESP]
dc.subject.por.fl_str_mv Dense packing
Minimum norm
Polynomials
Well-rounded lattice
topic Dense packing
Minimum norm
Polynomials
Well-rounded lattice
description Well-rounded lattices have been a topic of recent studies with applications in wiretap channels and in cryptography. A lattice of full rank in Euclidean space is called well-rounded if its set of minimal vectors spans the whole space. In this paper, we investigate the well-roundedness of lattices coming from polynomials with integer coefficients and real roots.
publishDate 2020
dc.date.none.fl_str_mv 2020-01-01
2022-04-28T19:29:20Z
2022-04-28T19:29:20Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.12732/ijam.v33i4.10
International Journal of Applied Mathematics, v. 33, n. 4, p. 663-672, 2020.
1314-8060
1311-1728
http://hdl.handle.net/11449/221552
10.12732/ijam.v33i4.10
2-s2.0-85090829819
url http://dx.doi.org/10.12732/ijam.v33i4.10
http://hdl.handle.net/11449/221552
identifier_str_mv International Journal of Applied Mathematics, v. 33, n. 4, p. 663-672, 2020.
1314-8060
1311-1728
10.12732/ijam.v33i4.10
2-s2.0-85090829819
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv International Journal of Applied Mathematics
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 663-672
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1834483403379965952