Well-rounded lattices via polynomials with real roots
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.12732/ijam.v33i4.10 http://hdl.handle.net/11449/221552 |
Resumo: | Well-rounded lattices have been a topic of recent studies with applications in wiretap channels and in cryptography. A lattice of full rank in Euclidean space is called well-rounded if its set of minimal vectors spans the whole space. In this paper, we investigate the well-roundedness of lattices coming from polynomials with integer coefficients and real roots. |
id |
UNSP_bcb87c744156e374062fca9a28ab35c0 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/221552 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Well-rounded lattices via polynomials with real rootsDense packingMinimum normPolynomialsWell-rounded latticeWell-rounded lattices have been a topic of recent studies with applications in wiretap channels and in cryptography. A lattice of full rank in Euclidean space is called well-rounded if its set of minimal vectors spans the whole space. In this paper, we investigate the well-roundedness of lattices coming from polynomials with integer coefficients and real roots.Department of Mathematics São Paulo State UniversityDepartment of Mathematics São Paulo State UniversityUniversidade Estadual Paulista (UNESP)Alves, Carina [UNESP]Pinto, William L.S. [UNESP]Andrade, Antonio A. [UNESP]2022-04-28T19:29:20Z2022-04-28T19:29:20Z2020-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article663-672http://dx.doi.org/10.12732/ijam.v33i4.10International Journal of Applied Mathematics, v. 33, n. 4, p. 663-672, 2020.1314-80601311-1728http://hdl.handle.net/11449/22155210.12732/ijam.v33i4.102-s2.0-85090829819Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInternational Journal of Applied Mathematicsinfo:eu-repo/semantics/openAccess2022-04-28T19:29:20Zoai:repositorio.unesp.br:11449/221552Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462022-04-28T19:29:20Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Well-rounded lattices via polynomials with real roots |
title |
Well-rounded lattices via polynomials with real roots |
spellingShingle |
Well-rounded lattices via polynomials with real roots Alves, Carina [UNESP] Dense packing Minimum norm Polynomials Well-rounded lattice |
title_short |
Well-rounded lattices via polynomials with real roots |
title_full |
Well-rounded lattices via polynomials with real roots |
title_fullStr |
Well-rounded lattices via polynomials with real roots |
title_full_unstemmed |
Well-rounded lattices via polynomials with real roots |
title_sort |
Well-rounded lattices via polynomials with real roots |
author |
Alves, Carina [UNESP] |
author_facet |
Alves, Carina [UNESP] Pinto, William L.S. [UNESP] Andrade, Antonio A. [UNESP] |
author_role |
author |
author2 |
Pinto, William L.S. [UNESP] Andrade, Antonio A. [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Alves, Carina [UNESP] Pinto, William L.S. [UNESP] Andrade, Antonio A. [UNESP] |
dc.subject.por.fl_str_mv |
Dense packing Minimum norm Polynomials Well-rounded lattice |
topic |
Dense packing Minimum norm Polynomials Well-rounded lattice |
description |
Well-rounded lattices have been a topic of recent studies with applications in wiretap channels and in cryptography. A lattice of full rank in Euclidean space is called well-rounded if its set of minimal vectors spans the whole space. In this paper, we investigate the well-roundedness of lattices coming from polynomials with integer coefficients and real roots. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-01-01 2022-04-28T19:29:20Z 2022-04-28T19:29:20Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.12732/ijam.v33i4.10 International Journal of Applied Mathematics, v. 33, n. 4, p. 663-672, 2020. 1314-8060 1311-1728 http://hdl.handle.net/11449/221552 10.12732/ijam.v33i4.10 2-s2.0-85090829819 |
url |
http://dx.doi.org/10.12732/ijam.v33i4.10 http://hdl.handle.net/11449/221552 |
identifier_str_mv |
International Journal of Applied Mathematics, v. 33, n. 4, p. 663-672, 2020. 1314-8060 1311-1728 10.12732/ijam.v33i4.10 2-s2.0-85090829819 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
International Journal of Applied Mathematics |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
663-672 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1834483403379965952 |