Export Ready — 

Characterizations of Δ-Volterra lattice: a symmetric orthogonal polynomials interpretation

Bibliographic Details
Main Author: Area, I.
Publication Date: 2016
Other Authors: Branquinho, A., Moreno, A. Foulquié, Godoy, E.
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10773/15123
Summary: In this paper we introduce the Δ-Volterra lattice which is interpreted in terms of symmetric orthogonal polynomials. It is shown that the measure of orthogonality associated with these systems of orthogonal polynomials evolves in t like (1+x2)1−tμ(x)(1+x2)1−tμ(x) where μ is a given positive Borel measure. Moreover, the Δ-Volterra lattice is related to the Δ-Toda lattice from Miura or Bäcklund transformations. The main ingredients are orthogonal polynomials which satisfy an Appell condition with respect to the forward difference operator Δ and the characterization of the point spectrum of a Jacobian operator that satisfies a Δ-Volterra equation (Lax type theorem). We also provide an explicit example of solutions of Δ-Volterra and Δ-Toda lattices, and connect this example with the results presented in the paper.
id RCAP_dceff6bc39f0cd9cf55cfd06882cdb05
oai_identifier_str oai:ria.ua.pt:10773/15123
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Characterizations of Δ-Volterra lattice: a symmetric orthogonal polynomials interpretationOrthogonal polynomialsDifference operatorsOperator theoryToda latticesIn this paper we introduce the Δ-Volterra lattice which is interpreted in terms of symmetric orthogonal polynomials. It is shown that the measure of orthogonality associated with these systems of orthogonal polynomials evolves in t like (1+x2)1−tμ(x)(1+x2)1−tμ(x) where μ is a given positive Borel measure. Moreover, the Δ-Volterra lattice is related to the Δ-Toda lattice from Miura or Bäcklund transformations. The main ingredients are orthogonal polynomials which satisfy an Appell condition with respect to the forward difference operator Δ and the characterization of the point spectrum of a Jacobian operator that satisfies a Δ-Volterra equation (Lax type theorem). We also provide an explicit example of solutions of Δ-Volterra and Δ-Toda lattices, and connect this example with the results presented in the paper.Elsevier2018-07-20T14:00:51Z2016-01-01T00:00:00Z2016-01-012016-12-31T16:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/15123eng0022-247X10.1016/j.jmaa.2015.07.051Area, I.Branquinho, A.Moreno, A. FoulquiéGodoy, E.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T03:56:04Zoai:ria.ua.pt:10773/15123Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T13:51:27.807771Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Characterizations of Δ-Volterra lattice: a symmetric orthogonal polynomials interpretation
title Characterizations of Δ-Volterra lattice: a symmetric orthogonal polynomials interpretation
spellingShingle Characterizations of Δ-Volterra lattice: a symmetric orthogonal polynomials interpretation
Area, I.
Orthogonal polynomials
Difference operators
Operator theory
Toda lattices
title_short Characterizations of Δ-Volterra lattice: a symmetric orthogonal polynomials interpretation
title_full Characterizations of Δ-Volterra lattice: a symmetric orthogonal polynomials interpretation
title_fullStr Characterizations of Δ-Volterra lattice: a symmetric orthogonal polynomials interpretation
title_full_unstemmed Characterizations of Δ-Volterra lattice: a symmetric orthogonal polynomials interpretation
title_sort Characterizations of Δ-Volterra lattice: a symmetric orthogonal polynomials interpretation
author Area, I.
author_facet Area, I.
Branquinho, A.
Moreno, A. Foulquié
Godoy, E.
author_role author
author2 Branquinho, A.
Moreno, A. Foulquié
Godoy, E.
author2_role author
author
author
dc.contributor.author.fl_str_mv Area, I.
Branquinho, A.
Moreno, A. Foulquié
Godoy, E.
dc.subject.por.fl_str_mv Orthogonal polynomials
Difference operators
Operator theory
Toda lattices
topic Orthogonal polynomials
Difference operators
Operator theory
Toda lattices
description In this paper we introduce the Δ-Volterra lattice which is interpreted in terms of symmetric orthogonal polynomials. It is shown that the measure of orthogonality associated with these systems of orthogonal polynomials evolves in t like (1+x2)1−tμ(x)(1+x2)1−tμ(x) where μ is a given positive Borel measure. Moreover, the Δ-Volterra lattice is related to the Δ-Toda lattice from Miura or Bäcklund transformations. The main ingredients are orthogonal polynomials which satisfy an Appell condition with respect to the forward difference operator Δ and the characterization of the point spectrum of a Jacobian operator that satisfies a Δ-Volterra equation (Lax type theorem). We also provide an explicit example of solutions of Δ-Volterra and Δ-Toda lattices, and connect this example with the results presented in the paper.
publishDate 2016
dc.date.none.fl_str_mv 2016-01-01T00:00:00Z
2016-01-01
2016-12-31T16:00:00Z
2018-07-20T14:00:51Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/15123
url http://hdl.handle.net/10773/15123
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0022-247X
10.1016/j.jmaa.2015.07.051
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594134439395328