Arboreal Identification Supported by Fuzzy Modeling for Trunk Texture Recognition
| Main Author: | |
|---|---|
| Publication Date: | 2018 |
| Other Authors: | , , , |
| Format: | Article |
| Language: | eng |
| Source: | Repositório Institucional da UNESP |
| Download full: | http://dx.doi.org/10.5540/tema.2018.019.01.0111 http://hdl.handle.net/11449/158044 |
Summary: | ABSTRACT Due to the natural variability of the arboreal bark there are texture patterns in trunk images with values belonging to more than one species. Thus, the present study analyzed the usage of fuzzy modeling as an alternative to handle the uncertainty in the trunk texture recognition, in comparison with other machine learning algorithms. A total of 2160 samples, belonging to 20 tree species from the Brazilian native deciduous forest, were used in the experimental analyzes. After transforming the images from RGB to HSV, 70 texture patterns have been extracted based on first and second order statistics. Secondly, an exploratory factor analysis was performed for dealing with redundant information and optimizing the computational effort. Then, only the first dimensions with higher cumulative variability were selected as input variables in the predictive modeling. As a result, fuzzy modeling reached a generalization ability that outperformed some algorithms widely used in classification tasks. Therefore, the fuzzy modeling can be considered as a competitive approach, with reliable performance in arboreal trunk texture recognition. |
| id |
UNSP_a5fc2b48e37ed89a082dfeb5ece7e78e |
|---|---|
| oai_identifier_str |
oai:repositorio.unesp.br:11449/158044 |
| network_acronym_str |
UNSP |
| network_name_str |
Repositório Institucional da UNESP |
| repository_id_str |
2946 |
| spelling |
Arboreal Identification Supported by Fuzzy Modeling for Trunk Texture Recognitionsoft computingimage processingpattern matchingbioinformaticscomputação não-rígidaprocessamento de imagenscorrespondência de padrõesbioinformáticaABSTRACT Due to the natural variability of the arboreal bark there are texture patterns in trunk images with values belonging to more than one species. Thus, the present study analyzed the usage of fuzzy modeling as an alternative to handle the uncertainty in the trunk texture recognition, in comparison with other machine learning algorithms. A total of 2160 samples, belonging to 20 tree species from the Brazilian native deciduous forest, were used in the experimental analyzes. After transforming the images from RGB to HSV, 70 texture patterns have been extracted based on first and second order statistics. Secondly, an exploratory factor analysis was performed for dealing with redundant information and optimizing the computational effort. Then, only the first dimensions with higher cumulative variability were selected as input variables in the predictive modeling. As a result, fuzzy modeling reached a generalization ability that outperformed some algorithms widely used in classification tasks. Therefore, the fuzzy modeling can be considered as a competitive approach, with reliable performance in arboreal trunk texture recognition.RESUMO Devido à variabilidade natural da casca arbórea, há padrões de textura em imagens de tronco com valores pertencentes a mais de uma espécie. Logo, o presente estudo analisou o uso da modelagem fuzzy como uma alternativa para lidar com a incerteza no reconhecimento de padrões, em comparação com outros algoritmos de aprendizado de máquina. Para as análises experimentais foram utilizadas um total de 2160 amostras, pertencentes a 20 espécies arbóreas da floresta decídua brasileira. Depois de transformar as imagens do sistema RGB para modelo HSV, 70 padrões de textura foram extraídos com base em estatísticas de primeira e segunda ordem. Na sequência, foi realizada uma análise fatorial exploratória para tratar informações redundantes e otimizar o esforço computacional. Então, apenas as primeiras dimensões com maior variabilidade acumulada foram selecionadas como variáveis de entrada na modelagem preditiva. Como resultado, a modelagem fuzzy alcançou uma capacidade de generalização superior a de algoritmos amplamente usados em tarefas de classificação. Portanto, a modelagem fuzzy pode ser considerada uma abordagem com desempenho competitivo e confíavel no reconhecimento da textura em imagens do tronco arbóreo.Faculdade de Engenharia de SorocabaUniversidade Estadual PaulistaUniversidade Estadual PaulistaSociedade Brasileira de Matemática Aplicada e ComputacionalFaculdade de Engenharia de SorocabaUniversidade Estadual Paulista (Unesp)Bressane, A.Fengler, F.h.Roveda, S.r.m.m.Roveda, J.a.f.Martins, A.c.g.2018-11-12T17:28:04Z2018-11-12T17:28:04Z2018-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article111-125application/pdfhttp://dx.doi.org/10.5540/tema.2018.019.01.0111TEMA (São Carlos). Sociedade Brasileira de Matemática Aplicada e Computacional, v. 19, n. 1, p. 111-125, 2018.2179-8451http://hdl.handle.net/11449/15804410.5540/tema.2018.019.01.0111S2179-84512018000100111S2179-84512018000100111.pdf895963755940420662498421093548560000-0002-4899-39830000-0003-3390-8747SciELOreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengTEMA (São Carlos)info:eu-repo/semantics/openAccess2023-11-25T06:18:48Zoai:repositorio.unesp.br:11449/158044Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462023-11-25T06:18:48Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
| dc.title.none.fl_str_mv |
Arboreal Identification Supported by Fuzzy Modeling for Trunk Texture Recognition |
| title |
Arboreal Identification Supported by Fuzzy Modeling for Trunk Texture Recognition |
| spellingShingle |
Arboreal Identification Supported by Fuzzy Modeling for Trunk Texture Recognition Bressane, A. soft computing image processing pattern matching bioinformatics computação não-rígida processamento de imagens correspondência de padrões bioinformática |
| title_short |
Arboreal Identification Supported by Fuzzy Modeling for Trunk Texture Recognition |
| title_full |
Arboreal Identification Supported by Fuzzy Modeling for Trunk Texture Recognition |
| title_fullStr |
Arboreal Identification Supported by Fuzzy Modeling for Trunk Texture Recognition |
| title_full_unstemmed |
Arboreal Identification Supported by Fuzzy Modeling for Trunk Texture Recognition |
| title_sort |
Arboreal Identification Supported by Fuzzy Modeling for Trunk Texture Recognition |
| author |
Bressane, A. |
| author_facet |
Bressane, A. Fengler, F.h. Roveda, S.r.m.m. Roveda, J.a.f. Martins, A.c.g. |
| author_role |
author |
| author2 |
Fengler, F.h. Roveda, S.r.m.m. Roveda, J.a.f. Martins, A.c.g. |
| author2_role |
author author author author |
| dc.contributor.none.fl_str_mv |
Faculdade de Engenharia de Sorocaba Universidade Estadual Paulista (Unesp) |
| dc.contributor.author.fl_str_mv |
Bressane, A. Fengler, F.h. Roveda, S.r.m.m. Roveda, J.a.f. Martins, A.c.g. |
| dc.subject.por.fl_str_mv |
soft computing image processing pattern matching bioinformatics computação não-rígida processamento de imagens correspondência de padrões bioinformática |
| topic |
soft computing image processing pattern matching bioinformatics computação não-rígida processamento de imagens correspondência de padrões bioinformática |
| description |
ABSTRACT Due to the natural variability of the arboreal bark there are texture patterns in trunk images with values belonging to more than one species. Thus, the present study analyzed the usage of fuzzy modeling as an alternative to handle the uncertainty in the trunk texture recognition, in comparison with other machine learning algorithms. A total of 2160 samples, belonging to 20 tree species from the Brazilian native deciduous forest, were used in the experimental analyzes. After transforming the images from RGB to HSV, 70 texture patterns have been extracted based on first and second order statistics. Secondly, an exploratory factor analysis was performed for dealing with redundant information and optimizing the computational effort. Then, only the first dimensions with higher cumulative variability were selected as input variables in the predictive modeling. As a result, fuzzy modeling reached a generalization ability that outperformed some algorithms widely used in classification tasks. Therefore, the fuzzy modeling can be considered as a competitive approach, with reliable performance in arboreal trunk texture recognition. |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018-11-12T17:28:04Z 2018-11-12T17:28:04Z 2018-01-01 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.5540/tema.2018.019.01.0111 TEMA (São Carlos). Sociedade Brasileira de Matemática Aplicada e Computacional, v. 19, n. 1, p. 111-125, 2018. 2179-8451 http://hdl.handle.net/11449/158044 10.5540/tema.2018.019.01.0111 S2179-84512018000100111 S2179-84512018000100111.pdf 8959637559404206 6249842109354856 0000-0002-4899-3983 0000-0003-3390-8747 |
| url |
http://dx.doi.org/10.5540/tema.2018.019.01.0111 http://hdl.handle.net/11449/158044 |
| identifier_str_mv |
TEMA (São Carlos). Sociedade Brasileira de Matemática Aplicada e Computacional, v. 19, n. 1, p. 111-125, 2018. 2179-8451 10.5540/tema.2018.019.01.0111 S2179-84512018000100111 S2179-84512018000100111.pdf 8959637559404206 6249842109354856 0000-0002-4899-3983 0000-0003-3390-8747 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
TEMA (São Carlos) |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
111-125 application/pdf |
| dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
| publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
| dc.source.none.fl_str_mv |
SciELO reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
| instname_str |
Universidade Estadual Paulista (UNESP) |
| instacron_str |
UNESP |
| institution |
UNESP |
| reponame_str |
Repositório Institucional da UNESP |
| collection |
Repositório Institucional da UNESP |
| repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
| repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
| _version_ |
1834484390896336896 |