Arboreal Identification Supported by Fuzzy Modeling for Trunk Texture Recognition

Bibliographic Details
Main Author: Bressane, A.
Publication Date: 2018
Other Authors: Fengler, F.h., Roveda, S.r.m.m., Roveda, J.a.f., Martins, A.c.g.
Format: Article
Language: eng
Source: Repositório Institucional da UNESP
Download full: http://dx.doi.org/10.5540/tema.2018.019.01.0111
http://hdl.handle.net/11449/158044
Summary: ABSTRACT Due to the natural variability of the arboreal bark there are texture patterns in trunk images with values belonging to more than one species. Thus, the present study analyzed the usage of fuzzy modeling as an alternative to handle the uncertainty in the trunk texture recognition, in comparison with other machine learning algorithms. A total of 2160 samples, belonging to 20 tree species from the Brazilian native deciduous forest, were used in the experimental analyzes. After transforming the images from RGB to HSV, 70 texture patterns have been extracted based on first and second order statistics. Secondly, an exploratory factor analysis was performed for dealing with redundant information and optimizing the computational effort. Then, only the first dimensions with higher cumulative variability were selected as input variables in the predictive modeling. As a result, fuzzy modeling reached a generalization ability that outperformed some algorithms widely used in classification tasks. Therefore, the fuzzy modeling can be considered as a competitive approach, with reliable performance in arboreal trunk texture recognition.
id UNSP_a5fc2b48e37ed89a082dfeb5ece7e78e
oai_identifier_str oai:repositorio.unesp.br:11449/158044
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Arboreal Identification Supported by Fuzzy Modeling for Trunk Texture Recognitionsoft computingimage processingpattern matchingbioinformaticscomputação não-rígidaprocessamento de imagenscorrespondência de padrõesbioinformáticaABSTRACT Due to the natural variability of the arboreal bark there are texture patterns in trunk images with values belonging to more than one species. Thus, the present study analyzed the usage of fuzzy modeling as an alternative to handle the uncertainty in the trunk texture recognition, in comparison with other machine learning algorithms. A total of 2160 samples, belonging to 20 tree species from the Brazilian native deciduous forest, were used in the experimental analyzes. After transforming the images from RGB to HSV, 70 texture patterns have been extracted based on first and second order statistics. Secondly, an exploratory factor analysis was performed for dealing with redundant information and optimizing the computational effort. Then, only the first dimensions with higher cumulative variability were selected as input variables in the predictive modeling. As a result, fuzzy modeling reached a generalization ability that outperformed some algorithms widely used in classification tasks. Therefore, the fuzzy modeling can be considered as a competitive approach, with reliable performance in arboreal trunk texture recognition.RESUMO Devido à variabilidade natural da casca arbórea, há padrões de textura em imagens de tronco com valores pertencentes a mais de uma espécie. Logo, o presente estudo analisou o uso da modelagem fuzzy como uma alternativa para lidar com a incerteza no reconhecimento de padrões, em comparação com outros algoritmos de aprendizado de máquina. Para as análises experimentais foram utilizadas um total de 2160 amostras, pertencentes a 20 espécies arbóreas da floresta decídua brasileira. Depois de transformar as imagens do sistema RGB para modelo HSV, 70 padrões de textura foram extraídos com base em estatísticas de primeira e segunda ordem. Na sequência, foi realizada uma análise fatorial exploratória para tratar informações redundantes e otimizar o esforço computacional. Então, apenas as primeiras dimensões com maior variabilidade acumulada foram selecionadas como variáveis de entrada na modelagem preditiva. Como resultado, a modelagem fuzzy alcançou uma capacidade de generalização superior a de algoritmos amplamente usados em tarefas de classificação. Portanto, a modelagem fuzzy pode ser considerada uma abordagem com desempenho competitivo e confíavel no reconhecimento da textura em imagens do tronco arbóreo.Faculdade de Engenharia de SorocabaUniversidade Estadual PaulistaUniversidade Estadual PaulistaSociedade Brasileira de Matemática Aplicada e ComputacionalFaculdade de Engenharia de SorocabaUniversidade Estadual Paulista (Unesp)Bressane, A.Fengler, F.h.Roveda, S.r.m.m.Roveda, J.a.f.Martins, A.c.g.2018-11-12T17:28:04Z2018-11-12T17:28:04Z2018-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article111-125application/pdfhttp://dx.doi.org/10.5540/tema.2018.019.01.0111TEMA (São Carlos). Sociedade Brasileira de Matemática Aplicada e Computacional, v. 19, n. 1, p. 111-125, 2018.2179-8451http://hdl.handle.net/11449/15804410.5540/tema.2018.019.01.0111S2179-84512018000100111S2179-84512018000100111.pdf895963755940420662498421093548560000-0002-4899-39830000-0003-3390-8747SciELOreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengTEMA (São Carlos)info:eu-repo/semantics/openAccess2023-11-25T06:18:48Zoai:repositorio.unesp.br:11449/158044Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462023-11-25T06:18:48Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Arboreal Identification Supported by Fuzzy Modeling for Trunk Texture Recognition
title Arboreal Identification Supported by Fuzzy Modeling for Trunk Texture Recognition
spellingShingle Arboreal Identification Supported by Fuzzy Modeling for Trunk Texture Recognition
Bressane, A.
soft computing
image processing
pattern matching
bioinformatics
computação não-rígida
processamento de imagens
correspondência de padrões
bioinformática
title_short Arboreal Identification Supported by Fuzzy Modeling for Trunk Texture Recognition
title_full Arboreal Identification Supported by Fuzzy Modeling for Trunk Texture Recognition
title_fullStr Arboreal Identification Supported by Fuzzy Modeling for Trunk Texture Recognition
title_full_unstemmed Arboreal Identification Supported by Fuzzy Modeling for Trunk Texture Recognition
title_sort Arboreal Identification Supported by Fuzzy Modeling for Trunk Texture Recognition
author Bressane, A.
author_facet Bressane, A.
Fengler, F.h.
Roveda, S.r.m.m.
Roveda, J.a.f.
Martins, A.c.g.
author_role author
author2 Fengler, F.h.
Roveda, S.r.m.m.
Roveda, J.a.f.
Martins, A.c.g.
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Faculdade de Engenharia de Sorocaba
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Bressane, A.
Fengler, F.h.
Roveda, S.r.m.m.
Roveda, J.a.f.
Martins, A.c.g.
dc.subject.por.fl_str_mv soft computing
image processing
pattern matching
bioinformatics
computação não-rígida
processamento de imagens
correspondência de padrões
bioinformática
topic soft computing
image processing
pattern matching
bioinformatics
computação não-rígida
processamento de imagens
correspondência de padrões
bioinformática
description ABSTRACT Due to the natural variability of the arboreal bark there are texture patterns in trunk images with values belonging to more than one species. Thus, the present study analyzed the usage of fuzzy modeling as an alternative to handle the uncertainty in the trunk texture recognition, in comparison with other machine learning algorithms. A total of 2160 samples, belonging to 20 tree species from the Brazilian native deciduous forest, were used in the experimental analyzes. After transforming the images from RGB to HSV, 70 texture patterns have been extracted based on first and second order statistics. Secondly, an exploratory factor analysis was performed for dealing with redundant information and optimizing the computational effort. Then, only the first dimensions with higher cumulative variability were selected as input variables in the predictive modeling. As a result, fuzzy modeling reached a generalization ability that outperformed some algorithms widely used in classification tasks. Therefore, the fuzzy modeling can be considered as a competitive approach, with reliable performance in arboreal trunk texture recognition.
publishDate 2018
dc.date.none.fl_str_mv 2018-11-12T17:28:04Z
2018-11-12T17:28:04Z
2018-01-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.5540/tema.2018.019.01.0111
TEMA (São Carlos). Sociedade Brasileira de Matemática Aplicada e Computacional, v. 19, n. 1, p. 111-125, 2018.
2179-8451
http://hdl.handle.net/11449/158044
10.5540/tema.2018.019.01.0111
S2179-84512018000100111
S2179-84512018000100111.pdf
8959637559404206
6249842109354856
0000-0002-4899-3983
0000-0003-3390-8747
url http://dx.doi.org/10.5540/tema.2018.019.01.0111
http://hdl.handle.net/11449/158044
identifier_str_mv TEMA (São Carlos). Sociedade Brasileira de Matemática Aplicada e Computacional, v. 19, n. 1, p. 111-125, 2018.
2179-8451
10.5540/tema.2018.019.01.0111
S2179-84512018000100111
S2179-84512018000100111.pdf
8959637559404206
6249842109354856
0000-0002-4899-3983
0000-0003-3390-8747
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv TEMA (São Carlos)
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 111-125
application/pdf
dc.publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
dc.source.none.fl_str_mv SciELO
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1834484390896336896