Parameter and coupling estimation in small networks of Izhikevich's neurons

Bibliographic Details
Main Author: Aristides, R. P. [UNESP]
Publication Date: 2023
Other Authors: Pons, A. J., Cerdeira, H. A. [UNESP], Masoller, C., Tirabassi, G.
Format: Article
Language: eng
Source: Repositório Institucional da UNESP
Download full: http://dx.doi.org/10.1063/5.0144499
http://hdl.handle.net/11449/248724
Summary: Nowadays, experimental techniques allow scientists to have access to large amounts of data. In order to obtain reliable information from the complex systems that produce these data, appropriate analysis tools are needed. The Kalman filter is a frequently used technique to infer, assuming a model of the system, the parameters of the model from uncertain observations. A well-known implementation of the Kalman filter, the unscented Kalman filter (UKF), was recently shown to be able to infer the connectivity of a set of coupled chaotic oscillators. In this work, we test whether the UKF can also reconstruct the connectivity of small groups of coupled neurons when their links are either electrical or chemical synapses. In particular, we consider Izhikevich neurons and aim to infer which neurons influence each other, considering simulated spike trains as the experimental observations used by the UKF. First, we verify that the UKF can recover the parameters of a single neuron, even when the parameters vary in time. Second, we analyze small neural ensembles and demonstrate that the UKF allows inferring the connectivity between the neurons, even for heterogeneous, directed, and temporally evolving networks. Our results show that time-dependent parameter and coupling estimation is possible in this nonlinearly coupled system.
id UNSP_832adb53247fafe250f6f6665df7c9bd
oai_identifier_str oai:repositorio.unesp.br:11449/248724
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Parameter and coupling estimation in small networks of Izhikevich's neuronsNowadays, experimental techniques allow scientists to have access to large amounts of data. In order to obtain reliable information from the complex systems that produce these data, appropriate analysis tools are needed. The Kalman filter is a frequently used technique to infer, assuming a model of the system, the parameters of the model from uncertain observations. A well-known implementation of the Kalman filter, the unscented Kalman filter (UKF), was recently shown to be able to infer the connectivity of a set of coupled chaotic oscillators. In this work, we test whether the UKF can also reconstruct the connectivity of small groups of coupled neurons when their links are either electrical or chemical synapses. In particular, we consider Izhikevich neurons and aim to infer which neurons influence each other, considering simulated spike trains as the experimental observations used by the UKF. First, we verify that the UKF can recover the parameters of a single neuron, even when the parameters vary in time. Second, we analyze small neural ensembles and demonstrate that the UKF allows inferring the connectivity between the neurons, even for heterogeneous, directed, and temporally evolving networks. Our results show that time-dependent parameter and coupling estimation is possible in this nonlinearly coupled system.Instituto de Física Teórica Universidade Estadual Paulista, Rua Dr. Bento Teobaldo Ferraz 271, Bloco II, Barra FundaDepartament de Fisica Universitat Politecnica de Catalunya, St. Nebridi 22Instituto de Física Teórica Universidade Estadual Paulista, Rua Dr. Bento Teobaldo Ferraz 271, Bloco II, Barra FundaUniversidade Estadual Paulista (UNESP)Universitat Politecnica de CatalunyaAristides, R. P. [UNESP]Pons, A. J.Cerdeira, H. A. [UNESP]Masoller, C.Tirabassi, G.2023-07-29T13:52:00Z2023-07-29T13:52:00Z2023-04-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1063/5.0144499Chaos, v. 33, n. 4, 2023.1089-76821054-1500http://hdl.handle.net/11449/24872410.1063/5.01444992-s2.0-85153078375Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengChaosinfo:eu-repo/semantics/openAccess2024-11-25T20:17:20Zoai:repositorio.unesp.br:11449/248724Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-11-25T20:17:20Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Parameter and coupling estimation in small networks of Izhikevich's neurons
title Parameter and coupling estimation in small networks of Izhikevich's neurons
spellingShingle Parameter and coupling estimation in small networks of Izhikevich's neurons
Aristides, R. P. [UNESP]
title_short Parameter and coupling estimation in small networks of Izhikevich's neurons
title_full Parameter and coupling estimation in small networks of Izhikevich's neurons
title_fullStr Parameter and coupling estimation in small networks of Izhikevich's neurons
title_full_unstemmed Parameter and coupling estimation in small networks of Izhikevich's neurons
title_sort Parameter and coupling estimation in small networks of Izhikevich's neurons
author Aristides, R. P. [UNESP]
author_facet Aristides, R. P. [UNESP]
Pons, A. J.
Cerdeira, H. A. [UNESP]
Masoller, C.
Tirabassi, G.
author_role author
author2 Pons, A. J.
Cerdeira, H. A. [UNESP]
Masoller, C.
Tirabassi, G.
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
Universitat Politecnica de Catalunya
dc.contributor.author.fl_str_mv Aristides, R. P. [UNESP]
Pons, A. J.
Cerdeira, H. A. [UNESP]
Masoller, C.
Tirabassi, G.
description Nowadays, experimental techniques allow scientists to have access to large amounts of data. In order to obtain reliable information from the complex systems that produce these data, appropriate analysis tools are needed. The Kalman filter is a frequently used technique to infer, assuming a model of the system, the parameters of the model from uncertain observations. A well-known implementation of the Kalman filter, the unscented Kalman filter (UKF), was recently shown to be able to infer the connectivity of a set of coupled chaotic oscillators. In this work, we test whether the UKF can also reconstruct the connectivity of small groups of coupled neurons when their links are either electrical or chemical synapses. In particular, we consider Izhikevich neurons and aim to infer which neurons influence each other, considering simulated spike trains as the experimental observations used by the UKF. First, we verify that the UKF can recover the parameters of a single neuron, even when the parameters vary in time. Second, we analyze small neural ensembles and demonstrate that the UKF allows inferring the connectivity between the neurons, even for heterogeneous, directed, and temporally evolving networks. Our results show that time-dependent parameter and coupling estimation is possible in this nonlinearly coupled system.
publishDate 2023
dc.date.none.fl_str_mv 2023-07-29T13:52:00Z
2023-07-29T13:52:00Z
2023-04-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1063/5.0144499
Chaos, v. 33, n. 4, 2023.
1089-7682
1054-1500
http://hdl.handle.net/11449/248724
10.1063/5.0144499
2-s2.0-85153078375
url http://dx.doi.org/10.1063/5.0144499
http://hdl.handle.net/11449/248724
identifier_str_mv Chaos, v. 33, n. 4, 2023.
1089-7682
1054-1500
10.1063/5.0144499
2-s2.0-85153078375
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Chaos
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1834484838444302336