Parameter and coupling estimation in small networks of Izhikevich's neurons
| Main Author: | |
|---|---|
| Publication Date: | 2023 |
| Other Authors: | , , , |
| Format: | Article |
| Language: | eng |
| Source: | Repositório Institucional da UNESP |
| Download full: | http://dx.doi.org/10.1063/5.0144499 http://hdl.handle.net/11449/248724 |
Summary: | Nowadays, experimental techniques allow scientists to have access to large amounts of data. In order to obtain reliable information from the complex systems that produce these data, appropriate analysis tools are needed. The Kalman filter is a frequently used technique to infer, assuming a model of the system, the parameters of the model from uncertain observations. A well-known implementation of the Kalman filter, the unscented Kalman filter (UKF), was recently shown to be able to infer the connectivity of a set of coupled chaotic oscillators. In this work, we test whether the UKF can also reconstruct the connectivity of small groups of coupled neurons when their links are either electrical or chemical synapses. In particular, we consider Izhikevich neurons and aim to infer which neurons influence each other, considering simulated spike trains as the experimental observations used by the UKF. First, we verify that the UKF can recover the parameters of a single neuron, even when the parameters vary in time. Second, we analyze small neural ensembles and demonstrate that the UKF allows inferring the connectivity between the neurons, even for heterogeneous, directed, and temporally evolving networks. Our results show that time-dependent parameter and coupling estimation is possible in this nonlinearly coupled system. |
| id |
UNSP_832adb53247fafe250f6f6665df7c9bd |
|---|---|
| oai_identifier_str |
oai:repositorio.unesp.br:11449/248724 |
| network_acronym_str |
UNSP |
| network_name_str |
Repositório Institucional da UNESP |
| repository_id_str |
2946 |
| spelling |
Parameter and coupling estimation in small networks of Izhikevich's neuronsNowadays, experimental techniques allow scientists to have access to large amounts of data. In order to obtain reliable information from the complex systems that produce these data, appropriate analysis tools are needed. The Kalman filter is a frequently used technique to infer, assuming a model of the system, the parameters of the model from uncertain observations. A well-known implementation of the Kalman filter, the unscented Kalman filter (UKF), was recently shown to be able to infer the connectivity of a set of coupled chaotic oscillators. In this work, we test whether the UKF can also reconstruct the connectivity of small groups of coupled neurons when their links are either electrical or chemical synapses. In particular, we consider Izhikevich neurons and aim to infer which neurons influence each other, considering simulated spike trains as the experimental observations used by the UKF. First, we verify that the UKF can recover the parameters of a single neuron, even when the parameters vary in time. Second, we analyze small neural ensembles and demonstrate that the UKF allows inferring the connectivity between the neurons, even for heterogeneous, directed, and temporally evolving networks. Our results show that time-dependent parameter and coupling estimation is possible in this nonlinearly coupled system.Instituto de Física Teórica Universidade Estadual Paulista, Rua Dr. Bento Teobaldo Ferraz 271, Bloco II, Barra FundaDepartament de Fisica Universitat Politecnica de Catalunya, St. Nebridi 22Instituto de Física Teórica Universidade Estadual Paulista, Rua Dr. Bento Teobaldo Ferraz 271, Bloco II, Barra FundaUniversidade Estadual Paulista (UNESP)Universitat Politecnica de CatalunyaAristides, R. P. [UNESP]Pons, A. J.Cerdeira, H. A. [UNESP]Masoller, C.Tirabassi, G.2023-07-29T13:52:00Z2023-07-29T13:52:00Z2023-04-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1063/5.0144499Chaos, v. 33, n. 4, 2023.1089-76821054-1500http://hdl.handle.net/11449/24872410.1063/5.01444992-s2.0-85153078375Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengChaosinfo:eu-repo/semantics/openAccess2024-11-25T20:17:20Zoai:repositorio.unesp.br:11449/248724Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-11-25T20:17:20Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
| dc.title.none.fl_str_mv |
Parameter and coupling estimation in small networks of Izhikevich's neurons |
| title |
Parameter and coupling estimation in small networks of Izhikevich's neurons |
| spellingShingle |
Parameter and coupling estimation in small networks of Izhikevich's neurons Aristides, R. P. [UNESP] |
| title_short |
Parameter and coupling estimation in small networks of Izhikevich's neurons |
| title_full |
Parameter and coupling estimation in small networks of Izhikevich's neurons |
| title_fullStr |
Parameter and coupling estimation in small networks of Izhikevich's neurons |
| title_full_unstemmed |
Parameter and coupling estimation in small networks of Izhikevich's neurons |
| title_sort |
Parameter and coupling estimation in small networks of Izhikevich's neurons |
| author |
Aristides, R. P. [UNESP] |
| author_facet |
Aristides, R. P. [UNESP] Pons, A. J. Cerdeira, H. A. [UNESP] Masoller, C. Tirabassi, G. |
| author_role |
author |
| author2 |
Pons, A. J. Cerdeira, H. A. [UNESP] Masoller, C. Tirabassi, G. |
| author2_role |
author author author author |
| dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) Universitat Politecnica de Catalunya |
| dc.contributor.author.fl_str_mv |
Aristides, R. P. [UNESP] Pons, A. J. Cerdeira, H. A. [UNESP] Masoller, C. Tirabassi, G. |
| description |
Nowadays, experimental techniques allow scientists to have access to large amounts of data. In order to obtain reliable information from the complex systems that produce these data, appropriate analysis tools are needed. The Kalman filter is a frequently used technique to infer, assuming a model of the system, the parameters of the model from uncertain observations. A well-known implementation of the Kalman filter, the unscented Kalman filter (UKF), was recently shown to be able to infer the connectivity of a set of coupled chaotic oscillators. In this work, we test whether the UKF can also reconstruct the connectivity of small groups of coupled neurons when their links are either electrical or chemical synapses. In particular, we consider Izhikevich neurons and aim to infer which neurons influence each other, considering simulated spike trains as the experimental observations used by the UKF. First, we verify that the UKF can recover the parameters of a single neuron, even when the parameters vary in time. Second, we analyze small neural ensembles and demonstrate that the UKF allows inferring the connectivity between the neurons, even for heterogeneous, directed, and temporally evolving networks. Our results show that time-dependent parameter and coupling estimation is possible in this nonlinearly coupled system. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-07-29T13:52:00Z 2023-07-29T13:52:00Z 2023-04-01 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1063/5.0144499 Chaos, v. 33, n. 4, 2023. 1089-7682 1054-1500 http://hdl.handle.net/11449/248724 10.1063/5.0144499 2-s2.0-85153078375 |
| url |
http://dx.doi.org/10.1063/5.0144499 http://hdl.handle.net/11449/248724 |
| identifier_str_mv |
Chaos, v. 33, n. 4, 2023. 1089-7682 1054-1500 10.1063/5.0144499 2-s2.0-85153078375 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
Chaos |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
| instname_str |
Universidade Estadual Paulista (UNESP) |
| instacron_str |
UNESP |
| institution |
UNESP |
| reponame_str |
Repositório Institucional da UNESP |
| collection |
Repositório Institucional da UNESP |
| repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
| repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
| _version_ |
1834484838444302336 |