Association of Grad-CAM, LIME and Multidimensional Fractal Techniques for the Classification of H&E Images
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Outros Autores: | , , , , , , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.5220/0012358200003660 https://hdl.handle.net/11449/309503 |
Resumo: | In this work, a method based on the use of explainable artificial intelligence techniques with multiscale and multidimensional fractal techniques is presented in order to investigate histological images stained with Hematoxylin-Eosin. The CNN GoogLeNet neural activation patterns were explored, obtained from the gradient-weighted class activation mapping and locally-interpretable model-agnostic explanation techniques. The feature vectors were generated with multiscale and multidimensional fractal techniques, specifically fractal dimension, lacunarity and percolation. The features were evaluated by ranking each entry, using the ReliefF algorithm. The discriminative power of each solution was defined via classifiers with different heuristics. The best results were obtained from LIME, with a significant increase in accuracy and AUC rates when compared to those provided by GoogLeNet. The details presented here can contribute to the development of models aimed at the classification of histological images. |
id |
UNSP_7a1c039a7cf933b87ced88bf82d8f24b |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/309503 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Association of Grad-CAM, LIME and Multidimensional Fractal Techniques for the Classification of H&E ImagesDeep LearningExplainable Artificial IntelligenceFractal FeaturesHistological ImagesIn this work, a method based on the use of explainable artificial intelligence techniques with multiscale and multidimensional fractal techniques is presented in order to investigate histological images stained with Hematoxylin-Eosin. The CNN GoogLeNet neural activation patterns were explored, obtained from the gradient-weighted class activation mapping and locally-interpretable model-agnostic explanation techniques. The feature vectors were generated with multiscale and multidimensional fractal techniques, specifically fractal dimension, lacunarity and percolation. The features were evaluated by ranking each entry, using the ReliefF algorithm. The discriminative power of each solution was defined via classifiers with different heuristics. The best results were obtained from LIME, with a significant increase in accuracy and AUC rates when compared to those provided by GoogLeNet. The details presented here can contribute to the development of models aimed at the classification of histological images.Department of Computer Science and Statistics São Paulo State University, SPFaculty of Engineering University of PortoInstitute of Science and Technology Federal University of São Paulo, SPFaculty of Computer Science Federal University of Uberlândia, MGArea of Oral Pathology School of Dentistry Federal University of Uberlândia, MGDepartment of Histology and Morphology Institute of Biomedical Science Federal University of Uberlândia, MGDepartment of Computer Science and Statistics São Paulo State University, SPUniversidade Estadual Paulista (UNESP)University of PortoUniversidade de São Paulo (USP)Universidade Federal de Uberlândia (UFU)Lopes, Thales R. S. [UNESP]Roberto, Guilherme F.Soares, CarlosTosta, Thaína A. A.Silva, Adriano B.Loyola, Adriano M.Cardoso, Sérgio V.de Faria, Paulo R.do Nascimento, Marcelo Z.Neves, Leandro A. [UNESP]2025-04-29T20:15:44Z2024-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject441-447http://dx.doi.org/10.5220/0012358200003660Proceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, v. 2, p. 441-447.2184-43212184-5921https://hdl.handle.net/11449/30950310.5220/00123582000036602-s2.0-85192217456Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applicationsinfo:eu-repo/semantics/openAccess2025-04-30T13:33:10Zoai:repositorio.unesp.br:11449/309503Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-04-30T13:33:10Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Association of Grad-CAM, LIME and Multidimensional Fractal Techniques for the Classification of H&E Images |
title |
Association of Grad-CAM, LIME and Multidimensional Fractal Techniques for the Classification of H&E Images |
spellingShingle |
Association of Grad-CAM, LIME and Multidimensional Fractal Techniques for the Classification of H&E Images Lopes, Thales R. S. [UNESP] Deep Learning Explainable Artificial Intelligence Fractal Features Histological Images |
title_short |
Association of Grad-CAM, LIME and Multidimensional Fractal Techniques for the Classification of H&E Images |
title_full |
Association of Grad-CAM, LIME and Multidimensional Fractal Techniques for the Classification of H&E Images |
title_fullStr |
Association of Grad-CAM, LIME and Multidimensional Fractal Techniques for the Classification of H&E Images |
title_full_unstemmed |
Association of Grad-CAM, LIME and Multidimensional Fractal Techniques for the Classification of H&E Images |
title_sort |
Association of Grad-CAM, LIME and Multidimensional Fractal Techniques for the Classification of H&E Images |
author |
Lopes, Thales R. S. [UNESP] |
author_facet |
Lopes, Thales R. S. [UNESP] Roberto, Guilherme F. Soares, Carlos Tosta, Thaína A. A. Silva, Adriano B. Loyola, Adriano M. Cardoso, Sérgio V. de Faria, Paulo R. do Nascimento, Marcelo Z. Neves, Leandro A. [UNESP] |
author_role |
author |
author2 |
Roberto, Guilherme F. Soares, Carlos Tosta, Thaína A. A. Silva, Adriano B. Loyola, Adriano M. Cardoso, Sérgio V. de Faria, Paulo R. do Nascimento, Marcelo Z. Neves, Leandro A. [UNESP] |
author2_role |
author author author author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) University of Porto Universidade de São Paulo (USP) Universidade Federal de Uberlândia (UFU) |
dc.contributor.author.fl_str_mv |
Lopes, Thales R. S. [UNESP] Roberto, Guilherme F. Soares, Carlos Tosta, Thaína A. A. Silva, Adriano B. Loyola, Adriano M. Cardoso, Sérgio V. de Faria, Paulo R. do Nascimento, Marcelo Z. Neves, Leandro A. [UNESP] |
dc.subject.por.fl_str_mv |
Deep Learning Explainable Artificial Intelligence Fractal Features Histological Images |
topic |
Deep Learning Explainable Artificial Intelligence Fractal Features Histological Images |
description |
In this work, a method based on the use of explainable artificial intelligence techniques with multiscale and multidimensional fractal techniques is presented in order to investigate histological images stained with Hematoxylin-Eosin. The CNN GoogLeNet neural activation patterns were explored, obtained from the gradient-weighted class activation mapping and locally-interpretable model-agnostic explanation techniques. The feature vectors were generated with multiscale and multidimensional fractal techniques, specifically fractal dimension, lacunarity and percolation. The features were evaluated by ranking each entry, using the ReliefF algorithm. The discriminative power of each solution was defined via classifiers with different heuristics. The best results were obtained from LIME, with a significant increase in accuracy and AUC rates when compared to those provided by GoogLeNet. The details presented here can contribute to the development of models aimed at the classification of histological images. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-01-01 2025-04-29T20:15:44Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.5220/0012358200003660 Proceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, v. 2, p. 441-447. 2184-4321 2184-5921 https://hdl.handle.net/11449/309503 10.5220/0012358200003660 2-s2.0-85192217456 |
url |
http://dx.doi.org/10.5220/0012358200003660 https://hdl.handle.net/11449/309503 |
identifier_str_mv |
Proceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, v. 2, p. 441-447. 2184-4321 2184-5921 10.5220/0012358200003660 2-s2.0-85192217456 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Proceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
441-447 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1834482471947730944 |