Association of Grad-CAM, LIME and Multidimensional Fractal Techniques for the Classification of H&E Images

Detalhes bibliográficos
Autor(a) principal: Lopes, Thales R. S. [UNESP]
Data de Publicação: 2024
Outros Autores: Roberto, Guilherme F., Soares, Carlos, Tosta, Thaína A. A., Silva, Adriano B., Loyola, Adriano M., Cardoso, Sérgio V., de Faria, Paulo R., do Nascimento, Marcelo Z., Neves, Leandro A. [UNESP]
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.5220/0012358200003660
https://hdl.handle.net/11449/309503
Resumo: In this work, a method based on the use of explainable artificial intelligence techniques with multiscale and multidimensional fractal techniques is presented in order to investigate histological images stained with Hematoxylin-Eosin. The CNN GoogLeNet neural activation patterns were explored, obtained from the gradient-weighted class activation mapping and locally-interpretable model-agnostic explanation techniques. The feature vectors were generated with multiscale and multidimensional fractal techniques, specifically fractal dimension, lacunarity and percolation. The features were evaluated by ranking each entry, using the ReliefF algorithm. The discriminative power of each solution was defined via classifiers with different heuristics. The best results were obtained from LIME, with a significant increase in accuracy and AUC rates when compared to those provided by GoogLeNet. The details presented here can contribute to the development of models aimed at the classification of histological images.
id UNSP_7a1c039a7cf933b87ced88bf82d8f24b
oai_identifier_str oai:repositorio.unesp.br:11449/309503
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Association of Grad-CAM, LIME and Multidimensional Fractal Techniques for the Classification of H&E ImagesDeep LearningExplainable Artificial IntelligenceFractal FeaturesHistological ImagesIn this work, a method based on the use of explainable artificial intelligence techniques with multiscale and multidimensional fractal techniques is presented in order to investigate histological images stained with Hematoxylin-Eosin. The CNN GoogLeNet neural activation patterns were explored, obtained from the gradient-weighted class activation mapping and locally-interpretable model-agnostic explanation techniques. The feature vectors were generated with multiscale and multidimensional fractal techniques, specifically fractal dimension, lacunarity and percolation. The features were evaluated by ranking each entry, using the ReliefF algorithm. The discriminative power of each solution was defined via classifiers with different heuristics. The best results were obtained from LIME, with a significant increase in accuracy and AUC rates when compared to those provided by GoogLeNet. The details presented here can contribute to the development of models aimed at the classification of histological images.Department of Computer Science and Statistics São Paulo State University, SPFaculty of Engineering University of PortoInstitute of Science and Technology Federal University of São Paulo, SPFaculty of Computer Science Federal University of Uberlândia, MGArea of Oral Pathology School of Dentistry Federal University of Uberlândia, MGDepartment of Histology and Morphology Institute of Biomedical Science Federal University of Uberlândia, MGDepartment of Computer Science and Statistics São Paulo State University, SPUniversidade Estadual Paulista (UNESP)University of PortoUniversidade de São Paulo (USP)Universidade Federal de Uberlândia (UFU)Lopes, Thales R. S. [UNESP]Roberto, Guilherme F.Soares, CarlosTosta, Thaína A. A.Silva, Adriano B.Loyola, Adriano M.Cardoso, Sérgio V.de Faria, Paulo R.do Nascimento, Marcelo Z.Neves, Leandro A. [UNESP]2025-04-29T20:15:44Z2024-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject441-447http://dx.doi.org/10.5220/0012358200003660Proceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, v. 2, p. 441-447.2184-43212184-5921https://hdl.handle.net/11449/30950310.5220/00123582000036602-s2.0-85192217456Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applicationsinfo:eu-repo/semantics/openAccess2025-04-30T13:33:10Zoai:repositorio.unesp.br:11449/309503Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-04-30T13:33:10Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Association of Grad-CAM, LIME and Multidimensional Fractal Techniques for the Classification of H&E Images
title Association of Grad-CAM, LIME and Multidimensional Fractal Techniques for the Classification of H&E Images
spellingShingle Association of Grad-CAM, LIME and Multidimensional Fractal Techniques for the Classification of H&E Images
Lopes, Thales R. S. [UNESP]
Deep Learning
Explainable Artificial Intelligence
Fractal Features
Histological Images
title_short Association of Grad-CAM, LIME and Multidimensional Fractal Techniques for the Classification of H&E Images
title_full Association of Grad-CAM, LIME and Multidimensional Fractal Techniques for the Classification of H&E Images
title_fullStr Association of Grad-CAM, LIME and Multidimensional Fractal Techniques for the Classification of H&E Images
title_full_unstemmed Association of Grad-CAM, LIME and Multidimensional Fractal Techniques for the Classification of H&E Images
title_sort Association of Grad-CAM, LIME and Multidimensional Fractal Techniques for the Classification of H&E Images
author Lopes, Thales R. S. [UNESP]
author_facet Lopes, Thales R. S. [UNESP]
Roberto, Guilherme F.
Soares, Carlos
Tosta, Thaína A. A.
Silva, Adriano B.
Loyola, Adriano M.
Cardoso, Sérgio V.
de Faria, Paulo R.
do Nascimento, Marcelo Z.
Neves, Leandro A. [UNESP]
author_role author
author2 Roberto, Guilherme F.
Soares, Carlos
Tosta, Thaína A. A.
Silva, Adriano B.
Loyola, Adriano M.
Cardoso, Sérgio V.
de Faria, Paulo R.
do Nascimento, Marcelo Z.
Neves, Leandro A. [UNESP]
author2_role author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
University of Porto
Universidade de São Paulo (USP)
Universidade Federal de Uberlândia (UFU)
dc.contributor.author.fl_str_mv Lopes, Thales R. S. [UNESP]
Roberto, Guilherme F.
Soares, Carlos
Tosta, Thaína A. A.
Silva, Adriano B.
Loyola, Adriano M.
Cardoso, Sérgio V.
de Faria, Paulo R.
do Nascimento, Marcelo Z.
Neves, Leandro A. [UNESP]
dc.subject.por.fl_str_mv Deep Learning
Explainable Artificial Intelligence
Fractal Features
Histological Images
topic Deep Learning
Explainable Artificial Intelligence
Fractal Features
Histological Images
description In this work, a method based on the use of explainable artificial intelligence techniques with multiscale and multidimensional fractal techniques is presented in order to investigate histological images stained with Hematoxylin-Eosin. The CNN GoogLeNet neural activation patterns were explored, obtained from the gradient-weighted class activation mapping and locally-interpretable model-agnostic explanation techniques. The feature vectors were generated with multiscale and multidimensional fractal techniques, specifically fractal dimension, lacunarity and percolation. The features were evaluated by ranking each entry, using the ReliefF algorithm. The discriminative power of each solution was defined via classifiers with different heuristics. The best results were obtained from LIME, with a significant increase in accuracy and AUC rates when compared to those provided by GoogLeNet. The details presented here can contribute to the development of models aimed at the classification of histological images.
publishDate 2024
dc.date.none.fl_str_mv 2024-01-01
2025-04-29T20:15:44Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.5220/0012358200003660
Proceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, v. 2, p. 441-447.
2184-4321
2184-5921
https://hdl.handle.net/11449/309503
10.5220/0012358200003660
2-s2.0-85192217456
url http://dx.doi.org/10.5220/0012358200003660
https://hdl.handle.net/11449/309503
identifier_str_mv Proceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, v. 2, p. 441-447.
2184-4321
2184-5921
10.5220/0012358200003660
2-s2.0-85192217456
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Proceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 441-447
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1834482471947730944