Percolation Images: Fractal Geometry Features for Brain Tumor Classification

Detalhes bibliográficos
Autor(a) principal: Lumini, Alessandra
Data de Publicação: 2024
Outros Autores: Roberto, Guilherme Freire, Neves, Leandro Alves [UNESP], Martins, Alessandro Santana, do Nascimento, Marcelo Zanchetta
Tipo de documento: Capítulo de livro
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/978-3-031-47606-8_29
https://hdl.handle.net/11449/308182
Resumo: Brain tumor detection is crucial for clinical diagnosis and efficient therapy. In this work, we propose a hybrid approach for brain tumor classification based on both fractal geometry features and deep learning. In our proposed framework, we adopt the concept of fractal geometry to generate a “percolation” image with the aim of highlighting important spatial properties in brain images. Then both the original and the percolation images are provided as input to a convolutional neural network to detect the tumor. Extensive experiments, carried out on a well-known benchmark dataset, indicate that using percolation images can help the system perform better.
id UNSP_d5c17156eee30734f0ca2d80f5031b09
oai_identifier_str oai:repositorio.unesp.br:11449/308182
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Percolation Images: Fractal Geometry Features for Brain Tumor ClassificationBrain tumorsClassification ensembleDeep learningFeature representationsFractal featuresBrain tumor detection is crucial for clinical diagnosis and efficient therapy. In this work, we propose a hybrid approach for brain tumor classification based on both fractal geometry features and deep learning. In our proposed framework, we adopt the concept of fractal geometry to generate a “percolation” image with the aim of highlighting important spatial properties in brain images. Then both the original and the percolation images are provided as input to a convolutional neural network to detect the tumor. Extensive experiments, carried out on a well-known benchmark dataset, indicate that using percolation images can help the system perform better.Department of Computer Science and Engineering University of Bologna, FCInstitute of Mathematics and Computer Science (ICMC) University of São Paulo (USP), SPDepartment of Computer Science and Statistics (DCCE) São Paulo State University (UNESP), SPFederal Institute of Triângulo Mineiro (IFTM), MGFaculty of Computation (FACOM) Federal University of Uberlândia (UFU), MGDepartment of Computer Science and Statistics (DCCE) São Paulo State University (UNESP), SPUniversity of BolognaUniversidade de São Paulo (USP)Universidade Estadual Paulista (UNESP)Federal Institute of Triângulo Mineiro (IFTM)Universidade Federal de Uberlândia (UFU)Lumini, AlessandraRoberto, Guilherme FreireNeves, Leandro Alves [UNESP]Martins, Alessandro Santanado Nascimento, Marcelo Zanchetta2025-04-29T20:11:28Z2024-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookPart557-570http://dx.doi.org/10.1007/978-3-031-47606-8_29Advances in Neurobiology, v. 36, p. 557-570.2190-52232190-5215https://hdl.handle.net/11449/30818210.1007/978-3-031-47606-8_292-s2.0-85187787046Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengAdvances in Neurobiologyinfo:eu-repo/semantics/openAccess2025-04-30T14:39:16Zoai:repositorio.unesp.br:11449/308182Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-04-30T14:39:16Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Percolation Images: Fractal Geometry Features for Brain Tumor Classification
title Percolation Images: Fractal Geometry Features for Brain Tumor Classification
spellingShingle Percolation Images: Fractal Geometry Features for Brain Tumor Classification
Lumini, Alessandra
Brain tumors
Classification ensemble
Deep learning
Feature representations
Fractal features
title_short Percolation Images: Fractal Geometry Features for Brain Tumor Classification
title_full Percolation Images: Fractal Geometry Features for Brain Tumor Classification
title_fullStr Percolation Images: Fractal Geometry Features for Brain Tumor Classification
title_full_unstemmed Percolation Images: Fractal Geometry Features for Brain Tumor Classification
title_sort Percolation Images: Fractal Geometry Features for Brain Tumor Classification
author Lumini, Alessandra
author_facet Lumini, Alessandra
Roberto, Guilherme Freire
Neves, Leandro Alves [UNESP]
Martins, Alessandro Santana
do Nascimento, Marcelo Zanchetta
author_role author
author2 Roberto, Guilherme Freire
Neves, Leandro Alves [UNESP]
Martins, Alessandro Santana
do Nascimento, Marcelo Zanchetta
author2_role author
author
author
author
dc.contributor.none.fl_str_mv University of Bologna
Universidade de São Paulo (USP)
Universidade Estadual Paulista (UNESP)
Federal Institute of Triângulo Mineiro (IFTM)
Universidade Federal de Uberlândia (UFU)
dc.contributor.author.fl_str_mv Lumini, Alessandra
Roberto, Guilherme Freire
Neves, Leandro Alves [UNESP]
Martins, Alessandro Santana
do Nascimento, Marcelo Zanchetta
dc.subject.por.fl_str_mv Brain tumors
Classification ensemble
Deep learning
Feature representations
Fractal features
topic Brain tumors
Classification ensemble
Deep learning
Feature representations
Fractal features
description Brain tumor detection is crucial for clinical diagnosis and efficient therapy. In this work, we propose a hybrid approach for brain tumor classification based on both fractal geometry features and deep learning. In our proposed framework, we adopt the concept of fractal geometry to generate a “percolation” image with the aim of highlighting important spatial properties in brain images. Then both the original and the percolation images are provided as input to a convolutional neural network to detect the tumor. Extensive experiments, carried out on a well-known benchmark dataset, indicate that using percolation images can help the system perform better.
publishDate 2024
dc.date.none.fl_str_mv 2024-01-01
2025-04-29T20:11:28Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bookPart
format bookPart
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/978-3-031-47606-8_29
Advances in Neurobiology, v. 36, p. 557-570.
2190-5223
2190-5215
https://hdl.handle.net/11449/308182
10.1007/978-3-031-47606-8_29
2-s2.0-85187787046
url http://dx.doi.org/10.1007/978-3-031-47606-8_29
https://hdl.handle.net/11449/308182
identifier_str_mv Advances in Neurobiology, v. 36, p. 557-570.
2190-5223
2190-5215
10.1007/978-3-031-47606-8_29
2-s2.0-85187787046
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Advances in Neurobiology
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 557-570
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1834482783239536640