Percolation Images: Fractal Geometry Features for Brain Tumor Classification
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2024 |
| Outros Autores: | , , , |
| Tipo de documento: | Capítulo de livro |
| Idioma: | eng |
| Título da fonte: | Repositório Institucional da UNESP |
| Texto Completo: | http://dx.doi.org/10.1007/978-3-031-47606-8_29 https://hdl.handle.net/11449/308182 |
Resumo: | Brain tumor detection is crucial for clinical diagnosis and efficient therapy. In this work, we propose a hybrid approach for brain tumor classification based on both fractal geometry features and deep learning. In our proposed framework, we adopt the concept of fractal geometry to generate a “percolation” image with the aim of highlighting important spatial properties in brain images. Then both the original and the percolation images are provided as input to a convolutional neural network to detect the tumor. Extensive experiments, carried out on a well-known benchmark dataset, indicate that using percolation images can help the system perform better. |
| id |
UNSP_d5c17156eee30734f0ca2d80f5031b09 |
|---|---|
| oai_identifier_str |
oai:repositorio.unesp.br:11449/308182 |
| network_acronym_str |
UNSP |
| network_name_str |
Repositório Institucional da UNESP |
| repository_id_str |
2946 |
| spelling |
Percolation Images: Fractal Geometry Features for Brain Tumor ClassificationBrain tumorsClassification ensembleDeep learningFeature representationsFractal featuresBrain tumor detection is crucial for clinical diagnosis and efficient therapy. In this work, we propose a hybrid approach for brain tumor classification based on both fractal geometry features and deep learning. In our proposed framework, we adopt the concept of fractal geometry to generate a “percolation” image with the aim of highlighting important spatial properties in brain images. Then both the original and the percolation images are provided as input to a convolutional neural network to detect the tumor. Extensive experiments, carried out on a well-known benchmark dataset, indicate that using percolation images can help the system perform better.Department of Computer Science and Engineering University of Bologna, FCInstitute of Mathematics and Computer Science (ICMC) University of São Paulo (USP), SPDepartment of Computer Science and Statistics (DCCE) São Paulo State University (UNESP), SPFederal Institute of Triângulo Mineiro (IFTM), MGFaculty of Computation (FACOM) Federal University of Uberlândia (UFU), MGDepartment of Computer Science and Statistics (DCCE) São Paulo State University (UNESP), SPUniversity of BolognaUniversidade de São Paulo (USP)Universidade Estadual Paulista (UNESP)Federal Institute of Triângulo Mineiro (IFTM)Universidade Federal de Uberlândia (UFU)Lumini, AlessandraRoberto, Guilherme FreireNeves, Leandro Alves [UNESP]Martins, Alessandro Santanado Nascimento, Marcelo Zanchetta2025-04-29T20:11:28Z2024-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookPart557-570http://dx.doi.org/10.1007/978-3-031-47606-8_29Advances in Neurobiology, v. 36, p. 557-570.2190-52232190-5215https://hdl.handle.net/11449/30818210.1007/978-3-031-47606-8_292-s2.0-85187787046Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengAdvances in Neurobiologyinfo:eu-repo/semantics/openAccess2025-04-30T14:39:16Zoai:repositorio.unesp.br:11449/308182Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-04-30T14:39:16Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
| dc.title.none.fl_str_mv |
Percolation Images: Fractal Geometry Features for Brain Tumor Classification |
| title |
Percolation Images: Fractal Geometry Features for Brain Tumor Classification |
| spellingShingle |
Percolation Images: Fractal Geometry Features for Brain Tumor Classification Lumini, Alessandra Brain tumors Classification ensemble Deep learning Feature representations Fractal features |
| title_short |
Percolation Images: Fractal Geometry Features for Brain Tumor Classification |
| title_full |
Percolation Images: Fractal Geometry Features for Brain Tumor Classification |
| title_fullStr |
Percolation Images: Fractal Geometry Features for Brain Tumor Classification |
| title_full_unstemmed |
Percolation Images: Fractal Geometry Features for Brain Tumor Classification |
| title_sort |
Percolation Images: Fractal Geometry Features for Brain Tumor Classification |
| author |
Lumini, Alessandra |
| author_facet |
Lumini, Alessandra Roberto, Guilherme Freire Neves, Leandro Alves [UNESP] Martins, Alessandro Santana do Nascimento, Marcelo Zanchetta |
| author_role |
author |
| author2 |
Roberto, Guilherme Freire Neves, Leandro Alves [UNESP] Martins, Alessandro Santana do Nascimento, Marcelo Zanchetta |
| author2_role |
author author author author |
| dc.contributor.none.fl_str_mv |
University of Bologna Universidade de São Paulo (USP) Universidade Estadual Paulista (UNESP) Federal Institute of Triângulo Mineiro (IFTM) Universidade Federal de Uberlândia (UFU) |
| dc.contributor.author.fl_str_mv |
Lumini, Alessandra Roberto, Guilherme Freire Neves, Leandro Alves [UNESP] Martins, Alessandro Santana do Nascimento, Marcelo Zanchetta |
| dc.subject.por.fl_str_mv |
Brain tumors Classification ensemble Deep learning Feature representations Fractal features |
| topic |
Brain tumors Classification ensemble Deep learning Feature representations Fractal features |
| description |
Brain tumor detection is crucial for clinical diagnosis and efficient therapy. In this work, we propose a hybrid approach for brain tumor classification based on both fractal geometry features and deep learning. In our proposed framework, we adopt the concept of fractal geometry to generate a “percolation” image with the aim of highlighting important spatial properties in brain images. Then both the original and the percolation images are provided as input to a convolutional neural network to detect the tumor. Extensive experiments, carried out on a well-known benchmark dataset, indicate that using percolation images can help the system perform better. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-01-01 2025-04-29T20:11:28Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bookPart |
| format |
bookPart |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/978-3-031-47606-8_29 Advances in Neurobiology, v. 36, p. 557-570. 2190-5223 2190-5215 https://hdl.handle.net/11449/308182 10.1007/978-3-031-47606-8_29 2-s2.0-85187787046 |
| url |
http://dx.doi.org/10.1007/978-3-031-47606-8_29 https://hdl.handle.net/11449/308182 |
| identifier_str_mv |
Advances in Neurobiology, v. 36, p. 557-570. 2190-5223 2190-5215 10.1007/978-3-031-47606-8_29 2-s2.0-85187787046 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
Advances in Neurobiology |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
557-570 |
| dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
| instname_str |
Universidade Estadual Paulista (UNESP) |
| instacron_str |
UNESP |
| institution |
UNESP |
| reponame_str |
Repositório Institucional da UNESP |
| collection |
Repositório Institucional da UNESP |
| repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
| repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
| _version_ |
1834482783239536640 |