WO3/CuWO4 Ratio Controls Open-Circuit Photovoltage and Photocurrent in Type II Heterojunction Solar Fuel Photoelectrodes

Detalhes bibliográficos
Autor(a) principal: Escaliante, Lucas Caniati [UNESP]
Data de Publicação: 2025
Outros Autores: Azevedo Neto, Nilton Francelosi, Mendoza, Hervin Errol, Xiao, Chengcan, Kandel, Rajesh, da Silva, Jose Humberto Dias [UNESP], Osterloh, Frank E.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1021/acsaem.5c00160
https://hdl.handle.net/11449/297346
Resumo: WO3/CuWO4 photoelectrodes for the oxygen evolution reaction benefit from a type II heterojunction for charge separation. However, the impact of the WO3/CuWO4 ratio on the photocurrent and the photovoltage is not clear. To probe the effect of composition, CuxW1-xOy thin films with variable W:Cu ratios were prepared on FTO by reactive magnetron cosputtering of W and Cu, followed by air annealing at 500 °C. EDS, XRD, Rietveld refinement, and Raman spectroscopy confirm the presence of crystalline WO3 and CuWO4 in the W-rich films and increasing amounts of amorphous copper oxides in the Cu-rich films. Band gaps were determined by optical absorption spectroscopy, surface photovoltage spectroscopy (SPS), and photoaction spectra. Optical band gaps are found to decrease from 2.7 to 1.2 eV with increasing copper oxide content. SPS reveals n-type semiconductor photoanode behavior for WO3/CuWO4 samples and p-type photocathode behavior for CuOx-rich films. Photoelectrochemical experiments confirm stable water oxidation with Faraday efficiency near unity for all W-rich films and photocurrents that are increasing with CuWO4 content. Optimal performance is seen for WO3/CuWO4 mixed phases containing 47-75 mass% CuWO4. These compositions maximize charge separation at the type II heterojunction interface between the two materials. Additionally, according to incident photon-to-current efficiency (IPCE) data, WO3 improves photon conversion below 350 nm, while CuWO4 improves conversion at 450-525 nm. Overall, this work shows for the first time how the WO3/CuWO4 ratio controls the photovoltage and the photocurrent in type II heterojunction solar fuel photoelectrodes and how copper oxides in the copper-rich films severely degrade the performance. These results are useful in the context of bulk-heterojunction electrodes for the conversion of solar energy into fuels.
id UNSP_73744c8fbb6bb9959d45c2f9f8e8a0ee
oai_identifier_str oai:repositorio.unesp.br:11449/297346
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling WO3/CuWO4 Ratio Controls Open-Circuit Photovoltage and Photocurrent in Type II Heterojunction Solar Fuel PhotoelectrodesCuWO4hydrogenphotoelectrochemistrysputteringsurface photovoltage spectroscopywater splittingWO3WO3/CuWO4 photoelectrodes for the oxygen evolution reaction benefit from a type II heterojunction for charge separation. However, the impact of the WO3/CuWO4 ratio on the photocurrent and the photovoltage is not clear. To probe the effect of composition, CuxW1-xOy thin films with variable W:Cu ratios were prepared on FTO by reactive magnetron cosputtering of W and Cu, followed by air annealing at 500 °C. EDS, XRD, Rietveld refinement, and Raman spectroscopy confirm the presence of crystalline WO3 and CuWO4 in the W-rich films and increasing amounts of amorphous copper oxides in the Cu-rich films. Band gaps were determined by optical absorption spectroscopy, surface photovoltage spectroscopy (SPS), and photoaction spectra. Optical band gaps are found to decrease from 2.7 to 1.2 eV with increasing copper oxide content. SPS reveals n-type semiconductor photoanode behavior for WO3/CuWO4 samples and p-type photocathode behavior for CuOx-rich films. Photoelectrochemical experiments confirm stable water oxidation with Faraday efficiency near unity for all W-rich films and photocurrents that are increasing with CuWO4 content. Optimal performance is seen for WO3/CuWO4 mixed phases containing 47-75 mass% CuWO4. These compositions maximize charge separation at the type II heterojunction interface between the two materials. Additionally, according to incident photon-to-current efficiency (IPCE) data, WO3 improves photon conversion below 350 nm, while CuWO4 improves conversion at 450-525 nm. Overall, this work shows for the first time how the WO3/CuWO4 ratio controls the photovoltage and the photocurrent in type II heterojunction solar fuel photoelectrodes and how copper oxides in the copper-rich films severely degrade the performance. These results are useful in the context of bulk-heterojunction electrodes for the conversion of solar energy into fuels.School of Sciences Graduate Program in Materials Science and Technology − POSMAT Universidade Estadual Paulista − UNESP, São PauloPlasma and processes laboratory Instituto de Tecnologia Aeronáutica − ITA, São José dos CamposDepartment of Chemistry University of California, Davis. One Shields AvenueSchool of Sciences Graduate Program in Materials Science and Technology − POSMAT Universidade Estadual Paulista − UNESP, São PauloUniversidade Estadual Paulista (UNESP)Instituto de Tecnologia Aeronáutica − ITAUniversity of CaliforniaEscaliante, Lucas Caniati [UNESP]Azevedo Neto, Nilton FrancelosiMendoza, Hervin ErrolXiao, ChengcanKandel, Rajeshda Silva, Jose Humberto Dias [UNESP]Osterloh, Frank E.2025-04-29T18:06:23Z2025-03-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article3198-3208http://dx.doi.org/10.1021/acsaem.5c00160ACS Applied Energy Materials, v. 8, n. 5, p. 3198-3208, 2025.2574-0962https://hdl.handle.net/11449/29734610.1021/acsaem.5c001602-s2.0-86000433829Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengACS Applied Energy Materialsinfo:eu-repo/semantics/openAccess2025-06-24T05:44:54Zoai:repositorio.unesp.br:11449/297346Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-06-24T05:44:54Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv WO3/CuWO4 Ratio Controls Open-Circuit Photovoltage and Photocurrent in Type II Heterojunction Solar Fuel Photoelectrodes
title WO3/CuWO4 Ratio Controls Open-Circuit Photovoltage and Photocurrent in Type II Heterojunction Solar Fuel Photoelectrodes
spellingShingle WO3/CuWO4 Ratio Controls Open-Circuit Photovoltage and Photocurrent in Type II Heterojunction Solar Fuel Photoelectrodes
Escaliante, Lucas Caniati [UNESP]
CuWO4
hydrogen
photoelectrochemistry
sputtering
surface photovoltage spectroscopy
water splitting
WO3
title_short WO3/CuWO4 Ratio Controls Open-Circuit Photovoltage and Photocurrent in Type II Heterojunction Solar Fuel Photoelectrodes
title_full WO3/CuWO4 Ratio Controls Open-Circuit Photovoltage and Photocurrent in Type II Heterojunction Solar Fuel Photoelectrodes
title_fullStr WO3/CuWO4 Ratio Controls Open-Circuit Photovoltage and Photocurrent in Type II Heterojunction Solar Fuel Photoelectrodes
title_full_unstemmed WO3/CuWO4 Ratio Controls Open-Circuit Photovoltage and Photocurrent in Type II Heterojunction Solar Fuel Photoelectrodes
title_sort WO3/CuWO4 Ratio Controls Open-Circuit Photovoltage and Photocurrent in Type II Heterojunction Solar Fuel Photoelectrodes
author Escaliante, Lucas Caniati [UNESP]
author_facet Escaliante, Lucas Caniati [UNESP]
Azevedo Neto, Nilton Francelosi
Mendoza, Hervin Errol
Xiao, Chengcan
Kandel, Rajesh
da Silva, Jose Humberto Dias [UNESP]
Osterloh, Frank E.
author_role author
author2 Azevedo Neto, Nilton Francelosi
Mendoza, Hervin Errol
Xiao, Chengcan
Kandel, Rajesh
da Silva, Jose Humberto Dias [UNESP]
Osterloh, Frank E.
author2_role author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
Instituto de Tecnologia Aeronáutica − ITA
University of California
dc.contributor.author.fl_str_mv Escaliante, Lucas Caniati [UNESP]
Azevedo Neto, Nilton Francelosi
Mendoza, Hervin Errol
Xiao, Chengcan
Kandel, Rajesh
da Silva, Jose Humberto Dias [UNESP]
Osterloh, Frank E.
dc.subject.por.fl_str_mv CuWO4
hydrogen
photoelectrochemistry
sputtering
surface photovoltage spectroscopy
water splitting
WO3
topic CuWO4
hydrogen
photoelectrochemistry
sputtering
surface photovoltage spectroscopy
water splitting
WO3
description WO3/CuWO4 photoelectrodes for the oxygen evolution reaction benefit from a type II heterojunction for charge separation. However, the impact of the WO3/CuWO4 ratio on the photocurrent and the photovoltage is not clear. To probe the effect of composition, CuxW1-xOy thin films with variable W:Cu ratios were prepared on FTO by reactive magnetron cosputtering of W and Cu, followed by air annealing at 500 °C. EDS, XRD, Rietveld refinement, and Raman spectroscopy confirm the presence of crystalline WO3 and CuWO4 in the W-rich films and increasing amounts of amorphous copper oxides in the Cu-rich films. Band gaps were determined by optical absorption spectroscopy, surface photovoltage spectroscopy (SPS), and photoaction spectra. Optical band gaps are found to decrease from 2.7 to 1.2 eV with increasing copper oxide content. SPS reveals n-type semiconductor photoanode behavior for WO3/CuWO4 samples and p-type photocathode behavior for CuOx-rich films. Photoelectrochemical experiments confirm stable water oxidation with Faraday efficiency near unity for all W-rich films and photocurrents that are increasing with CuWO4 content. Optimal performance is seen for WO3/CuWO4 mixed phases containing 47-75 mass% CuWO4. These compositions maximize charge separation at the type II heterojunction interface between the two materials. Additionally, according to incident photon-to-current efficiency (IPCE) data, WO3 improves photon conversion below 350 nm, while CuWO4 improves conversion at 450-525 nm. Overall, this work shows for the first time how the WO3/CuWO4 ratio controls the photovoltage and the photocurrent in type II heterojunction solar fuel photoelectrodes and how copper oxides in the copper-rich films severely degrade the performance. These results are useful in the context of bulk-heterojunction electrodes for the conversion of solar energy into fuels.
publishDate 2025
dc.date.none.fl_str_mv 2025-04-29T18:06:23Z
2025-03-10
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1021/acsaem.5c00160
ACS Applied Energy Materials, v. 8, n. 5, p. 3198-3208, 2025.
2574-0962
https://hdl.handle.net/11449/297346
10.1021/acsaem.5c00160
2-s2.0-86000433829
url http://dx.doi.org/10.1021/acsaem.5c00160
https://hdl.handle.net/11449/297346
identifier_str_mv ACS Applied Energy Materials, v. 8, n. 5, p. 3198-3208, 2025.
2574-0962
10.1021/acsaem.5c00160
2-s2.0-86000433829
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv ACS Applied Energy Materials
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 3198-3208
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1851767133636132864