Sputter-Coated TiO2 Films as Passivation and Hole Transfer Layers for Improved Energy Conversion with Solar Fuel WO3/CuWO4 Photoanodes
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2024 |
| Outros Autores: | , , , , , |
| Tipo de documento: | Artigo |
| Idioma: | eng |
| Título da fonte: | Repositório Institucional da UNESP |
| Texto Completo: | http://dx.doi.org/10.1021/acsami.4c14214 https://hdl.handle.net/11449/304148 |
Resumo: | Atomic-layer-deposited (ALD) “leaky” TiO2 has gained interest as a charge-selective protection layer for semiconductor solar fuel electrodes. Here, the use of sputter-deposited TiO2 layers as hole-selective contacts for WO3/CuWO4 type-2 heterojunction water oxidation photoanodes is demonstrated for the first time. TiO2 protection layers with varying thicknesses (2 to 128 nm) were deposited by using the radio frequency (RF) magnetron sputtering technique. The resulting TiO2 films are amorphous as evidenced by Raman spectroscopy and powder X-ray diffraction (XRD). Photoelectrochemical scans and vibrating Kelvin probe photovoltage spectroscopy show that 2-8 nm TiO2 layers nearly double the photocurrent to 0.97 mA cm-2 under AM1.5 illumination (19% AQE at 350 nm), increase the surface photovoltage signal by 25%, and increase the WO3/CuWO4 effective band gap. These outcomes can be attributed to the selectivity of TiO2 for photoholes. Additionally, SPV data suggest that TiO2 overlayers suppress copper-based surface recombination defects. Reduced photocurrents and photovoltages are measured in thicker TiO2 films (16 to 128 nm) as a result of an increasing hole transfer resistance and because of light shading effects according to photoaction spectra. The TiO2 films also improve the stability of the WO3/CuWO4 photoelectrodes, allowing nearly constant O2 evolution over 3 h after an initial 20-35% loss. Overall, this work establishes RF magnetron sputtering as a useful method to install amorphous TiO2 passivation layers for improved WO3/CuWO4 solar fuel photoelectrodes. Furthermore, we show how the combination of PEC and SPV measurements provides insight into the function of the TiO2 coatings. |
| id |
UNSP_1f6bc5869fee35efa11df2e66b4511ea |
|---|---|
| oai_identifier_str |
oai:repositorio.unesp.br:11449/304148 |
| network_acronym_str |
UNSP |
| network_name_str |
Repositório Institucional da UNESP |
| repository_id_str |
2946 |
| spelling |
Sputter-Coated TiO2 Films as Passivation and Hole Transfer Layers for Improved Energy Conversion with Solar Fuel WO3/CuWO4 PhotoanodesCuWO4photoanodephotoelectrochemistryRF magnetron sputteringsurface photovoltage spectroscopyTiO2water splittingWO3Atomic-layer-deposited (ALD) “leaky” TiO2 has gained interest as a charge-selective protection layer for semiconductor solar fuel electrodes. Here, the use of sputter-deposited TiO2 layers as hole-selective contacts for WO3/CuWO4 type-2 heterojunction water oxidation photoanodes is demonstrated for the first time. TiO2 protection layers with varying thicknesses (2 to 128 nm) were deposited by using the radio frequency (RF) magnetron sputtering technique. The resulting TiO2 films are amorphous as evidenced by Raman spectroscopy and powder X-ray diffraction (XRD). Photoelectrochemical scans and vibrating Kelvin probe photovoltage spectroscopy show that 2-8 nm TiO2 layers nearly double the photocurrent to 0.97 mA cm-2 under AM1.5 illumination (19% AQE at 350 nm), increase the surface photovoltage signal by 25%, and increase the WO3/CuWO4 effective band gap. These outcomes can be attributed to the selectivity of TiO2 for photoholes. Additionally, SPV data suggest that TiO2 overlayers suppress copper-based surface recombination defects. Reduced photocurrents and photovoltages are measured in thicker TiO2 films (16 to 128 nm) as a result of an increasing hole transfer resistance and because of light shading effects according to photoaction spectra. The TiO2 films also improve the stability of the WO3/CuWO4 photoelectrodes, allowing nearly constant O2 evolution over 3 h after an initial 20-35% loss. Overall, this work establishes RF magnetron sputtering as a useful method to install amorphous TiO2 passivation layers for improved WO3/CuWO4 solar fuel photoelectrodes. Furthermore, we show how the combination of PEC and SPV measurements provides insight into the function of the TiO2 coatings.School of Sciences Graduate Program in Materials Science and Technology POSMAT Universidade Estadual Paulista UNESP, Avenida Engenheiro Luis Edmundo Carrijo Coube, 14-01, São PauloPlasma and Processes Laboratory Instituto Tecnológico de Aeronáutica─ITA, Praça Marechal Eduardo Gomes, 50, São PauloDepartment of Chemistry University of California Davis, One Shields AvenueSchool of Sciences Graduate Program in Materials Science and Technology POSMAT Universidade Estadual Paulista UNESP, Avenida Engenheiro Luis Edmundo Carrijo Coube, 14-01, São PauloUniversidade Estadual Paulista (UNESP)Instituto Tecnológico de Aeronáutica─ITADavisEscaliante, Lucas Caniati [UNESP]Azevedo Neto, Nilton FrancelosiMendoza, Hervin ErrolXiao, ChengcanKandel, Rajeshda Silva, Jose Humberto Dias [UNESP]Osterloh, Frank E.2025-04-29T19:34:00Z2024-12-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article69229-69238http://dx.doi.org/10.1021/acsami.4c14214ACS Applied Materials and Interfaces, v. 16, n. 50, p. 69229-69238, 2024.1944-82521944-8244https://hdl.handle.net/11449/30414810.1021/acsami.4c142142-s2.0-85211043616Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengACS Applied Materials and Interfacesinfo:eu-repo/semantics/openAccess2025-06-24T05:30:54Zoai:repositorio.unesp.br:11449/304148Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-06-24T05:30:54Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
| dc.title.none.fl_str_mv |
Sputter-Coated TiO2 Films as Passivation and Hole Transfer Layers for Improved Energy Conversion with Solar Fuel WO3/CuWO4 Photoanodes |
| title |
Sputter-Coated TiO2 Films as Passivation and Hole Transfer Layers for Improved Energy Conversion with Solar Fuel WO3/CuWO4 Photoanodes |
| spellingShingle |
Sputter-Coated TiO2 Films as Passivation and Hole Transfer Layers for Improved Energy Conversion with Solar Fuel WO3/CuWO4 Photoanodes Escaliante, Lucas Caniati [UNESP] CuWO4 photoanode photoelectrochemistry RF magnetron sputtering surface photovoltage spectroscopy TiO2 water splitting WO3 |
| title_short |
Sputter-Coated TiO2 Films as Passivation and Hole Transfer Layers for Improved Energy Conversion with Solar Fuel WO3/CuWO4 Photoanodes |
| title_full |
Sputter-Coated TiO2 Films as Passivation and Hole Transfer Layers for Improved Energy Conversion with Solar Fuel WO3/CuWO4 Photoanodes |
| title_fullStr |
Sputter-Coated TiO2 Films as Passivation and Hole Transfer Layers for Improved Energy Conversion with Solar Fuel WO3/CuWO4 Photoanodes |
| title_full_unstemmed |
Sputter-Coated TiO2 Films as Passivation and Hole Transfer Layers for Improved Energy Conversion with Solar Fuel WO3/CuWO4 Photoanodes |
| title_sort |
Sputter-Coated TiO2 Films as Passivation and Hole Transfer Layers for Improved Energy Conversion with Solar Fuel WO3/CuWO4 Photoanodes |
| author |
Escaliante, Lucas Caniati [UNESP] |
| author_facet |
Escaliante, Lucas Caniati [UNESP] Azevedo Neto, Nilton Francelosi Mendoza, Hervin Errol Xiao, Chengcan Kandel, Rajesh da Silva, Jose Humberto Dias [UNESP] Osterloh, Frank E. |
| author_role |
author |
| author2 |
Azevedo Neto, Nilton Francelosi Mendoza, Hervin Errol Xiao, Chengcan Kandel, Rajesh da Silva, Jose Humberto Dias [UNESP] Osterloh, Frank E. |
| author2_role |
author author author author author author |
| dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) Instituto Tecnológico de Aeronáutica─ITA Davis |
| dc.contributor.author.fl_str_mv |
Escaliante, Lucas Caniati [UNESP] Azevedo Neto, Nilton Francelosi Mendoza, Hervin Errol Xiao, Chengcan Kandel, Rajesh da Silva, Jose Humberto Dias [UNESP] Osterloh, Frank E. |
| dc.subject.por.fl_str_mv |
CuWO4 photoanode photoelectrochemistry RF magnetron sputtering surface photovoltage spectroscopy TiO2 water splitting WO3 |
| topic |
CuWO4 photoanode photoelectrochemistry RF magnetron sputtering surface photovoltage spectroscopy TiO2 water splitting WO3 |
| description |
Atomic-layer-deposited (ALD) “leaky” TiO2 has gained interest as a charge-selective protection layer for semiconductor solar fuel electrodes. Here, the use of sputter-deposited TiO2 layers as hole-selective contacts for WO3/CuWO4 type-2 heterojunction water oxidation photoanodes is demonstrated for the first time. TiO2 protection layers with varying thicknesses (2 to 128 nm) were deposited by using the radio frequency (RF) magnetron sputtering technique. The resulting TiO2 films are amorphous as evidenced by Raman spectroscopy and powder X-ray diffraction (XRD). Photoelectrochemical scans and vibrating Kelvin probe photovoltage spectroscopy show that 2-8 nm TiO2 layers nearly double the photocurrent to 0.97 mA cm-2 under AM1.5 illumination (19% AQE at 350 nm), increase the surface photovoltage signal by 25%, and increase the WO3/CuWO4 effective band gap. These outcomes can be attributed to the selectivity of TiO2 for photoholes. Additionally, SPV data suggest that TiO2 overlayers suppress copper-based surface recombination defects. Reduced photocurrents and photovoltages are measured in thicker TiO2 films (16 to 128 nm) as a result of an increasing hole transfer resistance and because of light shading effects according to photoaction spectra. The TiO2 films also improve the stability of the WO3/CuWO4 photoelectrodes, allowing nearly constant O2 evolution over 3 h after an initial 20-35% loss. Overall, this work establishes RF magnetron sputtering as a useful method to install amorphous TiO2 passivation layers for improved WO3/CuWO4 solar fuel photoelectrodes. Furthermore, we show how the combination of PEC and SPV measurements provides insight into the function of the TiO2 coatings. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-12-18 2025-04-29T19:34:00Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1021/acsami.4c14214 ACS Applied Materials and Interfaces, v. 16, n. 50, p. 69229-69238, 2024. 1944-8252 1944-8244 https://hdl.handle.net/11449/304148 10.1021/acsami.4c14214 2-s2.0-85211043616 |
| url |
http://dx.doi.org/10.1021/acsami.4c14214 https://hdl.handle.net/11449/304148 |
| identifier_str_mv |
ACS Applied Materials and Interfaces, v. 16, n. 50, p. 69229-69238, 2024. 1944-8252 1944-8244 10.1021/acsami.4c14214 2-s2.0-85211043616 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
ACS Applied Materials and Interfaces |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
69229-69238 |
| dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
| instname_str |
Universidade Estadual Paulista (UNESP) |
| instacron_str |
UNESP |
| institution |
UNESP |
| reponame_str |
Repositório Institucional da UNESP |
| collection |
Repositório Institucional da UNESP |
| repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
| repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
| _version_ |
1854948408875286528 |