Sputter-Coated TiO2 Films as Passivation and Hole Transfer Layers for Improved Energy Conversion with Solar Fuel WO3/CuWO4 Photoanodes

Detalhes bibliográficos
Autor(a) principal: Escaliante, Lucas Caniati [UNESP]
Data de Publicação: 2024
Outros Autores: Azevedo Neto, Nilton Francelosi, Mendoza, Hervin Errol, Xiao, Chengcan, Kandel, Rajesh, da Silva, Jose Humberto Dias [UNESP], Osterloh, Frank E.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1021/acsami.4c14214
https://hdl.handle.net/11449/304148
Resumo: Atomic-layer-deposited (ALD) “leaky” TiO2 has gained interest as a charge-selective protection layer for semiconductor solar fuel electrodes. Here, the use of sputter-deposited TiO2 layers as hole-selective contacts for WO3/CuWO4 type-2 heterojunction water oxidation photoanodes is demonstrated for the first time. TiO2 protection layers with varying thicknesses (2 to 128 nm) were deposited by using the radio frequency (RF) magnetron sputtering technique. The resulting TiO2 films are amorphous as evidenced by Raman spectroscopy and powder X-ray diffraction (XRD). Photoelectrochemical scans and vibrating Kelvin probe photovoltage spectroscopy show that 2-8 nm TiO2 layers nearly double the photocurrent to 0.97 mA cm-2 under AM1.5 illumination (19% AQE at 350 nm), increase the surface photovoltage signal by 25%, and increase the WO3/CuWO4 effective band gap. These outcomes can be attributed to the selectivity of TiO2 for photoholes. Additionally, SPV data suggest that TiO2 overlayers suppress copper-based surface recombination defects. Reduced photocurrents and photovoltages are measured in thicker TiO2 films (16 to 128 nm) as a result of an increasing hole transfer resistance and because of light shading effects according to photoaction spectra. The TiO2 films also improve the stability of the WO3/CuWO4 photoelectrodes, allowing nearly constant O2 evolution over 3 h after an initial 20-35% loss. Overall, this work establishes RF magnetron sputtering as a useful method to install amorphous TiO2 passivation layers for improved WO3/CuWO4 solar fuel photoelectrodes. Furthermore, we show how the combination of PEC and SPV measurements provides insight into the function of the TiO2 coatings.
id UNSP_1f6bc5869fee35efa11df2e66b4511ea
oai_identifier_str oai:repositorio.unesp.br:11449/304148
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Sputter-Coated TiO2 Films as Passivation and Hole Transfer Layers for Improved Energy Conversion with Solar Fuel WO3/CuWO4 PhotoanodesCuWO4photoanodephotoelectrochemistryRF magnetron sputteringsurface photovoltage spectroscopyTiO2water splittingWO3Atomic-layer-deposited (ALD) “leaky” TiO2 has gained interest as a charge-selective protection layer for semiconductor solar fuel electrodes. Here, the use of sputter-deposited TiO2 layers as hole-selective contacts for WO3/CuWO4 type-2 heterojunction water oxidation photoanodes is demonstrated for the first time. TiO2 protection layers with varying thicknesses (2 to 128 nm) were deposited by using the radio frequency (RF) magnetron sputtering technique. The resulting TiO2 films are amorphous as evidenced by Raman spectroscopy and powder X-ray diffraction (XRD). Photoelectrochemical scans and vibrating Kelvin probe photovoltage spectroscopy show that 2-8 nm TiO2 layers nearly double the photocurrent to 0.97 mA cm-2 under AM1.5 illumination (19% AQE at 350 nm), increase the surface photovoltage signal by 25%, and increase the WO3/CuWO4 effective band gap. These outcomes can be attributed to the selectivity of TiO2 for photoholes. Additionally, SPV data suggest that TiO2 overlayers suppress copper-based surface recombination defects. Reduced photocurrents and photovoltages are measured in thicker TiO2 films (16 to 128 nm) as a result of an increasing hole transfer resistance and because of light shading effects according to photoaction spectra. The TiO2 films also improve the stability of the WO3/CuWO4 photoelectrodes, allowing nearly constant O2 evolution over 3 h after an initial 20-35% loss. Overall, this work establishes RF magnetron sputtering as a useful method to install amorphous TiO2 passivation layers for improved WO3/CuWO4 solar fuel photoelectrodes. Furthermore, we show how the combination of PEC and SPV measurements provides insight into the function of the TiO2 coatings.School of Sciences Graduate Program in Materials Science and Technology POSMAT Universidade Estadual Paulista UNESP, Avenida Engenheiro Luis Edmundo Carrijo Coube, 14-01, São PauloPlasma and Processes Laboratory Instituto Tecnológico de Aeronáutica─ITA, Praça Marechal Eduardo Gomes, 50, São PauloDepartment of Chemistry University of California Davis, One Shields AvenueSchool of Sciences Graduate Program in Materials Science and Technology POSMAT Universidade Estadual Paulista UNESP, Avenida Engenheiro Luis Edmundo Carrijo Coube, 14-01, São PauloUniversidade Estadual Paulista (UNESP)Instituto Tecnológico de Aeronáutica─ITADavisEscaliante, Lucas Caniati [UNESP]Azevedo Neto, Nilton FrancelosiMendoza, Hervin ErrolXiao, ChengcanKandel, Rajeshda Silva, Jose Humberto Dias [UNESP]Osterloh, Frank E.2025-04-29T19:34:00Z2024-12-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article69229-69238http://dx.doi.org/10.1021/acsami.4c14214ACS Applied Materials and Interfaces, v. 16, n. 50, p. 69229-69238, 2024.1944-82521944-8244https://hdl.handle.net/11449/30414810.1021/acsami.4c142142-s2.0-85211043616Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengACS Applied Materials and Interfacesinfo:eu-repo/semantics/openAccess2025-06-24T05:30:54Zoai:repositorio.unesp.br:11449/304148Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-06-24T05:30:54Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Sputter-Coated TiO2 Films as Passivation and Hole Transfer Layers for Improved Energy Conversion with Solar Fuel WO3/CuWO4 Photoanodes
title Sputter-Coated TiO2 Films as Passivation and Hole Transfer Layers for Improved Energy Conversion with Solar Fuel WO3/CuWO4 Photoanodes
spellingShingle Sputter-Coated TiO2 Films as Passivation and Hole Transfer Layers for Improved Energy Conversion with Solar Fuel WO3/CuWO4 Photoanodes
Escaliante, Lucas Caniati [UNESP]
CuWO4
photoanode
photoelectrochemistry
RF magnetron sputtering
surface photovoltage spectroscopy
TiO2
water splitting
WO3
title_short Sputter-Coated TiO2 Films as Passivation and Hole Transfer Layers for Improved Energy Conversion with Solar Fuel WO3/CuWO4 Photoanodes
title_full Sputter-Coated TiO2 Films as Passivation and Hole Transfer Layers for Improved Energy Conversion with Solar Fuel WO3/CuWO4 Photoanodes
title_fullStr Sputter-Coated TiO2 Films as Passivation and Hole Transfer Layers for Improved Energy Conversion with Solar Fuel WO3/CuWO4 Photoanodes
title_full_unstemmed Sputter-Coated TiO2 Films as Passivation and Hole Transfer Layers for Improved Energy Conversion with Solar Fuel WO3/CuWO4 Photoanodes
title_sort Sputter-Coated TiO2 Films as Passivation and Hole Transfer Layers for Improved Energy Conversion with Solar Fuel WO3/CuWO4 Photoanodes
author Escaliante, Lucas Caniati [UNESP]
author_facet Escaliante, Lucas Caniati [UNESP]
Azevedo Neto, Nilton Francelosi
Mendoza, Hervin Errol
Xiao, Chengcan
Kandel, Rajesh
da Silva, Jose Humberto Dias [UNESP]
Osterloh, Frank E.
author_role author
author2 Azevedo Neto, Nilton Francelosi
Mendoza, Hervin Errol
Xiao, Chengcan
Kandel, Rajesh
da Silva, Jose Humberto Dias [UNESP]
Osterloh, Frank E.
author2_role author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
Instituto Tecnológico de Aeronáutica─ITA
Davis
dc.contributor.author.fl_str_mv Escaliante, Lucas Caniati [UNESP]
Azevedo Neto, Nilton Francelosi
Mendoza, Hervin Errol
Xiao, Chengcan
Kandel, Rajesh
da Silva, Jose Humberto Dias [UNESP]
Osterloh, Frank E.
dc.subject.por.fl_str_mv CuWO4
photoanode
photoelectrochemistry
RF magnetron sputtering
surface photovoltage spectroscopy
TiO2
water splitting
WO3
topic CuWO4
photoanode
photoelectrochemistry
RF magnetron sputtering
surface photovoltage spectroscopy
TiO2
water splitting
WO3
description Atomic-layer-deposited (ALD) “leaky” TiO2 has gained interest as a charge-selective protection layer for semiconductor solar fuel electrodes. Here, the use of sputter-deposited TiO2 layers as hole-selective contacts for WO3/CuWO4 type-2 heterojunction water oxidation photoanodes is demonstrated for the first time. TiO2 protection layers with varying thicknesses (2 to 128 nm) were deposited by using the radio frequency (RF) magnetron sputtering technique. The resulting TiO2 films are amorphous as evidenced by Raman spectroscopy and powder X-ray diffraction (XRD). Photoelectrochemical scans and vibrating Kelvin probe photovoltage spectroscopy show that 2-8 nm TiO2 layers nearly double the photocurrent to 0.97 mA cm-2 under AM1.5 illumination (19% AQE at 350 nm), increase the surface photovoltage signal by 25%, and increase the WO3/CuWO4 effective band gap. These outcomes can be attributed to the selectivity of TiO2 for photoholes. Additionally, SPV data suggest that TiO2 overlayers suppress copper-based surface recombination defects. Reduced photocurrents and photovoltages are measured in thicker TiO2 films (16 to 128 nm) as a result of an increasing hole transfer resistance and because of light shading effects according to photoaction spectra. The TiO2 films also improve the stability of the WO3/CuWO4 photoelectrodes, allowing nearly constant O2 evolution over 3 h after an initial 20-35% loss. Overall, this work establishes RF magnetron sputtering as a useful method to install amorphous TiO2 passivation layers for improved WO3/CuWO4 solar fuel photoelectrodes. Furthermore, we show how the combination of PEC and SPV measurements provides insight into the function of the TiO2 coatings.
publishDate 2024
dc.date.none.fl_str_mv 2024-12-18
2025-04-29T19:34:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1021/acsami.4c14214
ACS Applied Materials and Interfaces, v. 16, n. 50, p. 69229-69238, 2024.
1944-8252
1944-8244
https://hdl.handle.net/11449/304148
10.1021/acsami.4c14214
2-s2.0-85211043616
url http://dx.doi.org/10.1021/acsami.4c14214
https://hdl.handle.net/11449/304148
identifier_str_mv ACS Applied Materials and Interfaces, v. 16, n. 50, p. 69229-69238, 2024.
1944-8252
1944-8244
10.1021/acsami.4c14214
2-s2.0-85211043616
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv ACS Applied Materials and Interfaces
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 69229-69238
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1854948408875286528