On well-rounded lattices and lower bounds for the minimum norm of ideal lattices
Main Author: | |
---|---|
Publication Date: | 2025 |
Other Authors: | , |
Format: | Article |
Language: | eng |
Source: | Repositório Institucional da UNESP |
Download full: | http://dx.doi.org/10.1007/s00013-024-02065-y https://hdl.handle.net/11449/307139 |
Summary: | In this paper, we study properties of well-rounded ideal lattices focusing on the lower bounds for their minimum norm. We present counterexamples showing that the stated bounds in a previous work do not hold for mixed number fields through the canonical embedding. However, we prove that ideal lattices obtained via the Minkowski embedding (instead of the canonical embedding) are well-rounded if and only if the number field is cyclotomic. Additionally, we derive new lower bounds for the minimum norm of ideal lattices under both the canonical and twisted embeddings. Our results not only refine existing theories but also open new possibilities for research on well-rounded ideal lattices in higher dimensions. |
id |
UNSP_6a45e00a9fe08e4fc1d6d9623bae550b |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/307139 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
On well-rounded lattices and lower bounds for the minimum norm of ideal latticesCyclotomic fieldsIdeal latticesMinimum normNumber fieldsWell-rounded latticesIn this paper, we study properties of well-rounded ideal lattices focusing on the lower bounds for their minimum norm. We present counterexamples showing that the stated bounds in a previous work do not hold for mixed number fields through the canonical embedding. However, we prove that ideal lattices obtained via the Minkowski embedding (instead of the canonical embedding) are well-rounded if and only if the number field is cyclotomic. Additionally, we derive new lower bounds for the minimum norm of ideal lattices under both the canonical and twisted embeddings. Our results not only refine existing theories but also open new possibilities for research on well-rounded ideal lattices in higher dimensions.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Department of Mathematics São Paulo State University (UNESP), 1515, 24A Avenue, SPFaculty of Applied Sciences University of Campinas (Unicamp), 1300, Pedro Zaccaria Street, SPFederal Institute of São Paulo (IFSP), 239, Pastor José Dutra de Moraes Street, SPDepartment of Mathematics São Paulo State University (UNESP), 1515, 24A Avenue, SPFAPESP: 2020/09838-0FAPESP: 2022/12667-9FAPESP: 2024/03333-5CNPq: 405842/2023-6Universidade Estadual Paulista (UNESP)Universidade Estadual de Campinas (UNICAMP)Federal Institute of São Paulo (IFSP)Alves, Carina [UNESP]Strapasson, João E.Araujo, Robson R. de2025-04-29T20:08:33Z2025-02-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article121-130http://dx.doi.org/10.1007/s00013-024-02065-yArchiv der Mathematik, v. 124, n. 2, p. 121-130, 2025.1420-89380003-889Xhttps://hdl.handle.net/11449/30713910.1007/s00013-024-02065-y2-s2.0-85207963580Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengArchiv der Mathematikinfo:eu-repo/semantics/openAccess2025-04-30T14:00:18Zoai:repositorio.unesp.br:11449/307139Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-04-30T14:00:18Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
On well-rounded lattices and lower bounds for the minimum norm of ideal lattices |
title |
On well-rounded lattices and lower bounds for the minimum norm of ideal lattices |
spellingShingle |
On well-rounded lattices and lower bounds for the minimum norm of ideal lattices Alves, Carina [UNESP] Cyclotomic fields Ideal lattices Minimum norm Number fields Well-rounded lattices |
title_short |
On well-rounded lattices and lower bounds for the minimum norm of ideal lattices |
title_full |
On well-rounded lattices and lower bounds for the minimum norm of ideal lattices |
title_fullStr |
On well-rounded lattices and lower bounds for the minimum norm of ideal lattices |
title_full_unstemmed |
On well-rounded lattices and lower bounds for the minimum norm of ideal lattices |
title_sort |
On well-rounded lattices and lower bounds for the minimum norm of ideal lattices |
author |
Alves, Carina [UNESP] |
author_facet |
Alves, Carina [UNESP] Strapasson, João E. Araujo, Robson R. de |
author_role |
author |
author2 |
Strapasson, João E. Araujo, Robson R. de |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) Universidade Estadual de Campinas (UNICAMP) Federal Institute of São Paulo (IFSP) |
dc.contributor.author.fl_str_mv |
Alves, Carina [UNESP] Strapasson, João E. Araujo, Robson R. de |
dc.subject.por.fl_str_mv |
Cyclotomic fields Ideal lattices Minimum norm Number fields Well-rounded lattices |
topic |
Cyclotomic fields Ideal lattices Minimum norm Number fields Well-rounded lattices |
description |
In this paper, we study properties of well-rounded ideal lattices focusing on the lower bounds for their minimum norm. We present counterexamples showing that the stated bounds in a previous work do not hold for mixed number fields through the canonical embedding. However, we prove that ideal lattices obtained via the Minkowski embedding (instead of the canonical embedding) are well-rounded if and only if the number field is cyclotomic. Additionally, we derive new lower bounds for the minimum norm of ideal lattices under both the canonical and twisted embeddings. Our results not only refine existing theories but also open new possibilities for research on well-rounded ideal lattices in higher dimensions. |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-04-29T20:08:33Z 2025-02-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/s00013-024-02065-y Archiv der Mathematik, v. 124, n. 2, p. 121-130, 2025. 1420-8938 0003-889X https://hdl.handle.net/11449/307139 10.1007/s00013-024-02065-y 2-s2.0-85207963580 |
url |
http://dx.doi.org/10.1007/s00013-024-02065-y https://hdl.handle.net/11449/307139 |
identifier_str_mv |
Archiv der Mathematik, v. 124, n. 2, p. 121-130, 2025. 1420-8938 0003-889X 10.1007/s00013-024-02065-y 2-s2.0-85207963580 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Archiv der Mathematik |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
121-130 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1834482932093288448 |