Phishing Detection Using URL-based XAI Techniques

Bibliographic Details
Main Author: Hernandes, Paulo R. Galego
Publication Date: 2021
Other Authors: Floret, Camila P. [UNESP], De Almeida, Katia F. Cardozo [UNESP], Da Silva, Vinicius Camargo [UNESP], Papa, Joso Paulo [UNESP], Da Costa, Kelton A. Pontara [UNESP]
Format: Conference object
Language: eng
Source: Repositório Institucional da UNESP
Download full: http://dx.doi.org/10.1109/SSCI50451.2021.9659981
http://hdl.handle.net/11449/231630
Summary: The Internet has been growing exponentially and expanding facilities, such as payments and online purchases. Likewise, the number of criminals using electronic devices to commit theft or hijacking of information has increased. Many scams still require interaction with the victim, who in many cases is persuaded to access a malicious link sent by email, which is classified as phishing. This technique is one of the biggest threats for users and one of the most efficient for criminals. Several studies show different sorts of protection using Artificial Intelligence, which despite being very efficient, do not describe the reasons for categorizing them or using a URL as phishing. This paper focuses on detecting phishing using explainable techniques, i.e., Local Interpretable Model-Agnostic Explanations and Explainable Boosting Machine, to lighten up new advances and future works in the area.
id UNSP_438f012bdc8b1630c6c0ce606c917d39
oai_identifier_str oai:repositorio.unesp.br:11449/231630
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Phishing Detection Using URL-based XAI TechniquesArtificial intelligenceExplainableMachine learningPhishingXAIThe Internet has been growing exponentially and expanding facilities, such as payments and online purchases. Likewise, the number of criminals using electronic devices to commit theft or hijacking of information has increased. Many scams still require interaction with the victim, who in many cases is persuaded to access a malicious link sent by email, which is classified as phishing. This technique is one of the biggest threats for users and one of the most efficient for criminals. Several studies show different sorts of protection using Artificial Intelligence, which despite being very efficient, do not describe the reasons for categorizing them or using a URL as phishing. This paper focuses on detecting phishing using explainable techniques, i.e., Local Interpretable Model-Agnostic Explanations and Explainable Boosting Machine, to lighten up new advances and future works in the area.Fatec Ourinhos Department of Information SecuritySão Paulo State University Department of ComputingSão Paulo State University Department of ComputingFatec OurinhosUniversidade Estadual Paulista (UNESP)Hernandes, Paulo R. GalegoFloret, Camila P. [UNESP]De Almeida, Katia F. Cardozo [UNESP]Da Silva, Vinicius Camargo [UNESP]Papa, Joso Paulo [UNESP]Da Costa, Kelton A. Pontara [UNESP]2022-04-29T08:46:40Z2022-04-29T08:46:40Z2021-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://dx.doi.org/10.1109/SSCI50451.2021.96599812021 IEEE Symposium Series on Computational Intelligence, SSCI 2021 - Proceedings.http://hdl.handle.net/11449/23163010.1109/SSCI50451.2021.96599812-s2.0-85125777751Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2021 IEEE Symposium Series on Computational Intelligence, SSCI 2021 - Proceedingsinfo:eu-repo/semantics/openAccess2024-06-26T20:11:07Zoai:repositorio.unesp.br:11449/231630Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-03-28T15:07:57.205716Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Phishing Detection Using URL-based XAI Techniques
title Phishing Detection Using URL-based XAI Techniques
spellingShingle Phishing Detection Using URL-based XAI Techniques
Hernandes, Paulo R. Galego
Artificial intelligence
Explainable
Machine learning
Phishing
XAI
title_short Phishing Detection Using URL-based XAI Techniques
title_full Phishing Detection Using URL-based XAI Techniques
title_fullStr Phishing Detection Using URL-based XAI Techniques
title_full_unstemmed Phishing Detection Using URL-based XAI Techniques
title_sort Phishing Detection Using URL-based XAI Techniques
author Hernandes, Paulo R. Galego
author_facet Hernandes, Paulo R. Galego
Floret, Camila P. [UNESP]
De Almeida, Katia F. Cardozo [UNESP]
Da Silva, Vinicius Camargo [UNESP]
Papa, Joso Paulo [UNESP]
Da Costa, Kelton A. Pontara [UNESP]
author_role author
author2 Floret, Camila P. [UNESP]
De Almeida, Katia F. Cardozo [UNESP]
Da Silva, Vinicius Camargo [UNESP]
Papa, Joso Paulo [UNESP]
Da Costa, Kelton A. Pontara [UNESP]
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Fatec Ourinhos
Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Hernandes, Paulo R. Galego
Floret, Camila P. [UNESP]
De Almeida, Katia F. Cardozo [UNESP]
Da Silva, Vinicius Camargo [UNESP]
Papa, Joso Paulo [UNESP]
Da Costa, Kelton A. Pontara [UNESP]
dc.subject.por.fl_str_mv Artificial intelligence
Explainable
Machine learning
Phishing
XAI
topic Artificial intelligence
Explainable
Machine learning
Phishing
XAI
description The Internet has been growing exponentially and expanding facilities, such as payments and online purchases. Likewise, the number of criminals using electronic devices to commit theft or hijacking of information has increased. Many scams still require interaction with the victim, who in many cases is persuaded to access a malicious link sent by email, which is classified as phishing. This technique is one of the biggest threats for users and one of the most efficient for criminals. Several studies show different sorts of protection using Artificial Intelligence, which despite being very efficient, do not describe the reasons for categorizing them or using a URL as phishing. This paper focuses on detecting phishing using explainable techniques, i.e., Local Interpretable Model-Agnostic Explanations and Explainable Boosting Machine, to lighten up new advances and future works in the area.
publishDate 2021
dc.date.none.fl_str_mv 2021-01-01
2022-04-29T08:46:40Z
2022-04-29T08:46:40Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/SSCI50451.2021.9659981
2021 IEEE Symposium Series on Computational Intelligence, SSCI 2021 - Proceedings.
http://hdl.handle.net/11449/231630
10.1109/SSCI50451.2021.9659981
2-s2.0-85125777751
url http://dx.doi.org/10.1109/SSCI50451.2021.9659981
http://hdl.handle.net/11449/231630
identifier_str_mv 2021 IEEE Symposium Series on Computational Intelligence, SSCI 2021 - Proceedings.
10.1109/SSCI50451.2021.9659981
2-s2.0-85125777751
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2021 IEEE Symposium Series on Computational Intelligence, SSCI 2021 - Proceedings
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1834483994724401152