Phishing website detection using genetic algorithm-based feature selection and parameter hypertuning
Main Author: | |
---|---|
Publication Date: | 2023 |
Format: | Master thesis |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10362/152538 |
Summary: | Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Business Analytics |
id |
RCAP_4a339973e22f02e8a4ecde045c4bb9d1 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/152538 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Phishing website detection using genetic algorithm-based feature selection and parameter hypertuningPhishingArtificial IntelligenceMachine LearningDeep LearningEvolutionary AlgorithmsGenetic AlgorithmsDissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Business AnalyticsFalse webpages are created by cyber attackers who seek to mislead users into revealing sensitive and personal information, from credit card details to passwords. Phishing is a class of cyber attacks that mislead users into clicking on false websites, logging into related accounts, and subsequently stealing funds. This cyberattack increases annually given the exponential increase of e-commerce customers, which causes difficulty to distinguish between harmless and false websites. The conventional methods to detect phishing websites are focused on a database of blacklisted and whitelisted. Such methods are not capable to detect new phishing websites. To solve this problem, researchers are developing machine learning (ML) and deep learning-based methods. In this dissertation, a hybrid-based solution, which uses genetic algorithms and ML algorithms for phishing detection based on the URL of the website is proposed. Regarding evaluation, comparisons between conventional ML and DL models are performed using various feature sets resulting from commonly used feature selection methods, such as mutual information and recursive feature elimination. This dissertation proposes a final model with an accuracy of 95.34% on the test set.Henriques, Roberto André PereiraRUNSilva, Ana Sofia Pulquério2023-05-09T17:21:33Z2023-04-102023-04-10T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/152538TID:203286367enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T18:11:16Zoai:run.unl.pt:10362/152538Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:41:30.760617Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Phishing website detection using genetic algorithm-based feature selection and parameter hypertuning |
title |
Phishing website detection using genetic algorithm-based feature selection and parameter hypertuning |
spellingShingle |
Phishing website detection using genetic algorithm-based feature selection and parameter hypertuning Silva, Ana Sofia Pulquério Phishing Artificial Intelligence Machine Learning Deep Learning Evolutionary Algorithms Genetic Algorithms |
title_short |
Phishing website detection using genetic algorithm-based feature selection and parameter hypertuning |
title_full |
Phishing website detection using genetic algorithm-based feature selection and parameter hypertuning |
title_fullStr |
Phishing website detection using genetic algorithm-based feature selection and parameter hypertuning |
title_full_unstemmed |
Phishing website detection using genetic algorithm-based feature selection and parameter hypertuning |
title_sort |
Phishing website detection using genetic algorithm-based feature selection and parameter hypertuning |
author |
Silva, Ana Sofia Pulquério |
author_facet |
Silva, Ana Sofia Pulquério |
author_role |
author |
dc.contributor.none.fl_str_mv |
Henriques, Roberto André Pereira RUN |
dc.contributor.author.fl_str_mv |
Silva, Ana Sofia Pulquério |
dc.subject.por.fl_str_mv |
Phishing Artificial Intelligence Machine Learning Deep Learning Evolutionary Algorithms Genetic Algorithms |
topic |
Phishing Artificial Intelligence Machine Learning Deep Learning Evolutionary Algorithms Genetic Algorithms |
description |
Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Business Analytics |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-05-09T17:21:33Z 2023-04-10 2023-04-10T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/152538 TID:203286367 |
url |
http://hdl.handle.net/10362/152538 |
identifier_str_mv |
TID:203286367 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833596899606659072 |