New families of global cubic centers
Main Author: | |
---|---|
Publication Date: | 2024 |
Other Authors: | |
Format: | Article |
Language: | eng |
Source: | Repositório Institucional da UNESP |
Download full: | http://dx.doi.org/10.1007/s40863-024-00411-0 https://hdl.handle.net/11449/302129 |
Summary: | An equilibrium point p of a differential system in the plane R2 is a center if there exists a neighbourhood U of p such that U\{p} is filled with periodic orbits. A difficult classical problem in the qualitative theory of differential systems in the plane R2 is the problem of distinguishing between a focus and a center. A global center is a center p such that R2\{p} is filled with periodic orbits. Another difficult problem in the qualitative theory of differential systems in R2 is to distinguish inside a family of centers the ones which are global. Lloyd, Pearson and Romanovsky characterized when the origin of coordinates is a center for the family of cubic polynomial differential systems x˙=y-Cx2+B+2Dxy+Cy2+Px3+Gx2y-H+3Pxy2+Ky3,y˙=-x+Dx2+E+2Cxy-Dy2-Kx3-H+3Px2y-Gxy2+Py3. Here we characterize when the origin of this family of differential system is a global center. |
id |
UNSP_3d41fa4b82a0d0f4d06da251bff26faa |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/302129 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
New families of global cubic centersCenterCubic polynomial differential systemsGlobal centerAn equilibrium point p of a differential system in the plane R2 is a center if there exists a neighbourhood U of p such that U\{p} is filled with periodic orbits. A difficult classical problem in the qualitative theory of differential systems in the plane R2 is the problem of distinguishing between a focus and a center. A global center is a center p such that R2\{p} is filled with periodic orbits. Another difficult problem in the qualitative theory of differential systems in R2 is to distinguish inside a family of centers the ones which are global. Lloyd, Pearson and Romanovsky characterized when the origin of coordinates is a center for the family of cubic polynomial differential systems x˙=y-Cx2+B+2Dxy+Cy2+Px3+Gx2y-H+3Pxy2+Ky3,y˙=-x+Dx2+E+2Cxy-Dy2-Kx3-H+3Px2y-Gxy2+Py3. Here we characterize when the origin of this family of differential system is a global center.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Departament de Matemàtiques Universitat Autònoma de Barcelona, CataloniaDepartamento de Matemática Ibilce–UNESPDepartamento de Matemática Ibilce–UNESPCAPES: 88887.802675/2023-00Universitat Autònoma de BarcelonaUniversidade Estadual Paulista (UNESP)Llibre, JaumeSerantola, Leonardo P. [UNESP]2025-04-29T19:13:39Z2024-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1454-1469http://dx.doi.org/10.1007/s40863-024-00411-0Sao Paulo Journal of Mathematical Sciences, v. 18, n. 2, p. 1454-1469, 2024.2316-90281982-6907https://hdl.handle.net/11449/30212910.1007/s40863-024-00411-02-s2.0-85189141219Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengSao Paulo Journal of Mathematical Sciencesinfo:eu-repo/semantics/openAccess2025-04-30T14:04:51Zoai:repositorio.unesp.br:11449/302129Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-04-30T14:04:51Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
New families of global cubic centers |
title |
New families of global cubic centers |
spellingShingle |
New families of global cubic centers Llibre, Jaume Center Cubic polynomial differential systems Global center |
title_short |
New families of global cubic centers |
title_full |
New families of global cubic centers |
title_fullStr |
New families of global cubic centers |
title_full_unstemmed |
New families of global cubic centers |
title_sort |
New families of global cubic centers |
author |
Llibre, Jaume |
author_facet |
Llibre, Jaume Serantola, Leonardo P. [UNESP] |
author_role |
author |
author2 |
Serantola, Leonardo P. [UNESP] |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universitat Autònoma de Barcelona Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Llibre, Jaume Serantola, Leonardo P. [UNESP] |
dc.subject.por.fl_str_mv |
Center Cubic polynomial differential systems Global center |
topic |
Center Cubic polynomial differential systems Global center |
description |
An equilibrium point p of a differential system in the plane R2 is a center if there exists a neighbourhood U of p such that U\{p} is filled with periodic orbits. A difficult classical problem in the qualitative theory of differential systems in the plane R2 is the problem of distinguishing between a focus and a center. A global center is a center p such that R2\{p} is filled with periodic orbits. Another difficult problem in the qualitative theory of differential systems in R2 is to distinguish inside a family of centers the ones which are global. Lloyd, Pearson and Romanovsky characterized when the origin of coordinates is a center for the family of cubic polynomial differential systems x˙=y-Cx2+B+2Dxy+Cy2+Px3+Gx2y-H+3Pxy2+Ky3,y˙=-x+Dx2+E+2Cxy-Dy2-Kx3-H+3Px2y-Gxy2+Py3. Here we characterize when the origin of this family of differential system is a global center. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-12-01 2025-04-29T19:13:39Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/s40863-024-00411-0 Sao Paulo Journal of Mathematical Sciences, v. 18, n. 2, p. 1454-1469, 2024. 2316-9028 1982-6907 https://hdl.handle.net/11449/302129 10.1007/s40863-024-00411-0 2-s2.0-85189141219 |
url |
http://dx.doi.org/10.1007/s40863-024-00411-0 https://hdl.handle.net/11449/302129 |
identifier_str_mv |
Sao Paulo Journal of Mathematical Sciences, v. 18, n. 2, p. 1454-1469, 2024. 2316-9028 1982-6907 10.1007/s40863-024-00411-0 2-s2.0-85189141219 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Sao Paulo Journal of Mathematical Sciences |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
1454-1469 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1834482911830605824 |