New families of global cubic centers

Bibliographic Details
Main Author: Llibre, Jaume
Publication Date: 2024
Other Authors: Serantola, Leonardo P. [UNESP]
Format: Article
Language: eng
Source: Repositório Institucional da UNESP
Download full: http://dx.doi.org/10.1007/s40863-024-00411-0
https://hdl.handle.net/11449/302129
Summary: An equilibrium point p of a differential system in the plane R2 is a center if there exists a neighbourhood U of p such that U\{p} is filled with periodic orbits. A difficult classical problem in the qualitative theory of differential systems in the plane R2 is the problem of distinguishing between a focus and a center. A global center is a center p such that R2\{p} is filled with periodic orbits. Another difficult problem in the qualitative theory of differential systems in R2 is to distinguish inside a family of centers the ones which are global. Lloyd, Pearson and Romanovsky characterized when the origin of coordinates is a center for the family of cubic polynomial differential systems x˙=y-Cx2+B+2Dxy+Cy2+Px3+Gx2y-H+3Pxy2+Ky3,y˙=-x+Dx2+E+2Cxy-Dy2-Kx3-H+3Px2y-Gxy2+Py3. Here we characterize when the origin of this family of differential system is a global center.
id UNSP_3d41fa4b82a0d0f4d06da251bff26faa
oai_identifier_str oai:repositorio.unesp.br:11449/302129
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling New families of global cubic centersCenterCubic polynomial differential systemsGlobal centerAn equilibrium point p of a differential system in the plane R2 is a center if there exists a neighbourhood U of p such that U\{p} is filled with periodic orbits. A difficult classical problem in the qualitative theory of differential systems in the plane R2 is the problem of distinguishing between a focus and a center. A global center is a center p such that R2\{p} is filled with periodic orbits. Another difficult problem in the qualitative theory of differential systems in R2 is to distinguish inside a family of centers the ones which are global. Lloyd, Pearson and Romanovsky characterized when the origin of coordinates is a center for the family of cubic polynomial differential systems x˙=y-Cx2+B+2Dxy+Cy2+Px3+Gx2y-H+3Pxy2+Ky3,y˙=-x+Dx2+E+2Cxy-Dy2-Kx3-H+3Px2y-Gxy2+Py3. Here we characterize when the origin of this family of differential system is a global center.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Departament de Matemàtiques Universitat Autònoma de Barcelona, CataloniaDepartamento de Matemática Ibilce–UNESPDepartamento de Matemática Ibilce–UNESPCAPES: 88887.802675/2023-00Universitat Autònoma de BarcelonaUniversidade Estadual Paulista (UNESP)Llibre, JaumeSerantola, Leonardo P. [UNESP]2025-04-29T19:13:39Z2024-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1454-1469http://dx.doi.org/10.1007/s40863-024-00411-0Sao Paulo Journal of Mathematical Sciences, v. 18, n. 2, p. 1454-1469, 2024.2316-90281982-6907https://hdl.handle.net/11449/30212910.1007/s40863-024-00411-02-s2.0-85189141219Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengSao Paulo Journal of Mathematical Sciencesinfo:eu-repo/semantics/openAccess2025-04-30T14:04:51Zoai:repositorio.unesp.br:11449/302129Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-04-30T14:04:51Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv New families of global cubic centers
title New families of global cubic centers
spellingShingle New families of global cubic centers
Llibre, Jaume
Center
Cubic polynomial differential systems
Global center
title_short New families of global cubic centers
title_full New families of global cubic centers
title_fullStr New families of global cubic centers
title_full_unstemmed New families of global cubic centers
title_sort New families of global cubic centers
author Llibre, Jaume
author_facet Llibre, Jaume
Serantola, Leonardo P. [UNESP]
author_role author
author2 Serantola, Leonardo P. [UNESP]
author2_role author
dc.contributor.none.fl_str_mv Universitat Autònoma de Barcelona
Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Llibre, Jaume
Serantola, Leonardo P. [UNESP]
dc.subject.por.fl_str_mv Center
Cubic polynomial differential systems
Global center
topic Center
Cubic polynomial differential systems
Global center
description An equilibrium point p of a differential system in the plane R2 is a center if there exists a neighbourhood U of p such that U\{p} is filled with periodic orbits. A difficult classical problem in the qualitative theory of differential systems in the plane R2 is the problem of distinguishing between a focus and a center. A global center is a center p such that R2\{p} is filled with periodic orbits. Another difficult problem in the qualitative theory of differential systems in R2 is to distinguish inside a family of centers the ones which are global. Lloyd, Pearson and Romanovsky characterized when the origin of coordinates is a center for the family of cubic polynomial differential systems x˙=y-Cx2+B+2Dxy+Cy2+Px3+Gx2y-H+3Pxy2+Ky3,y˙=-x+Dx2+E+2Cxy-Dy2-Kx3-H+3Px2y-Gxy2+Py3. Here we characterize when the origin of this family of differential system is a global center.
publishDate 2024
dc.date.none.fl_str_mv 2024-12-01
2025-04-29T19:13:39Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/s40863-024-00411-0
Sao Paulo Journal of Mathematical Sciences, v. 18, n. 2, p. 1454-1469, 2024.
2316-9028
1982-6907
https://hdl.handle.net/11449/302129
10.1007/s40863-024-00411-0
2-s2.0-85189141219
url http://dx.doi.org/10.1007/s40863-024-00411-0
https://hdl.handle.net/11449/302129
identifier_str_mv Sao Paulo Journal of Mathematical Sciences, v. 18, n. 2, p. 1454-1469, 2024.
2316-9028
1982-6907
10.1007/s40863-024-00411-0
2-s2.0-85189141219
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Sao Paulo Journal of Mathematical Sciences
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 1454-1469
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1834482911830605824